1,878 research outputs found

    The implications of embodiment for behavior and cognition: animal and robotic case studies

    Full text link
    In this paper, we will argue that if we want to understand the function of the brain (or the control in the case of robots), we must understand how the brain is embedded into the physical system, and how the organism interacts with the real world. While embodiment has often been used in its trivial meaning, i.e. 'intelligence requires a body', the concept has deeper and more important implications, concerned with the relation between physical and information (neural, control) processes. A number of case studies are presented to illustrate the concept. These involve animals and robots and are concentrated around locomotion, grasping, and visual perception. A theoretical scheme that can be used to embed the diverse case studies will be presented. Finally, we will establish a link between the low-level sensory-motor processes and cognition. We will present an embodied view on categorization, and propose the concepts of 'body schema' and 'forward models' as a natural extension of the embodied approach toward first representations.Comment: Book chapter in W. Tschacher & C. Bergomi, ed., 'The Implications of Embodiment: Cognition and Communication', Exeter: Imprint Academic, pp. 31-5

    Paradigm Shift in Game Theory : Sociological Re-Conceptualization of Human Agency, Social Structure, and Agents’ Cognitive-Normative Frameworks and Action Determination Modalities

    Get PDF
    This article aims to present some of the initial work of developing a social science grounded game theory—as a clear alternative to classical game theory. Two distinct independent initiatives in Sociology are presented: One, a systems approach, social systems game theory (SGT), and the other, Erving Goffman’s interactionist approach (IGT). These approaches are presented and contrasted with classical theory. They focus on the social rules, norms, roles, role relationships, and institutional arrangements, which structure and regulate human behavior. While strategic judgment and instrumental rationality play an important part in the sociological approaches, they are not a universal or dominant modality of social action determination. Rule following is considered, generally speaking, more characteristic and more general. Sociological approaches, such as those outlined in this article provide a language and conceptual tools to more adequately and effectively than the classical theory describe, model, and analyze the diversity and complexity of human interaction conditions and processes: (1) complex cognitive rule based models of the interaction situation with which actors understand and analyze their situations; (2) value complex(es) with which actors operate, often with multiple values and norms applying in interaction situations; (3) action repertoires (rule complexes) with simple and complex action alternatives—plans, programs, established (sometimes highly elaborated) algorithms, and rituals; (4) a rule complex of action determination modalities for actors to generate and/or select actions in game situations; three action modalities are considered here; each modality consists of one or more procedures or algorithms for action determination: (I) following or implementing a rule or rule complex, norm, role, ritual, or social relation; (II) selecting or choosing among given or institutionalized alternatives according to a rule or principle; and (III) constructing or adopting one or more alternatives according to a value, guideline, or set of criteria. Such determinations are often carried out collectively. The paper identifies and illustrates in a concluding table several of the key differences between classical theory and the sociological approaches on a number of dimensions relating to human agency; social structure, norms, institutions, and cultural forms; patterns of game interaction and outcomes, the conditions of cooperation and conflict, game restructuring and transformation, and empirical relevance. Sociologically based game theory, such as the contributions outlined in this article suggest a language and conceptual tools to more adequately and effectively than the classical theory describe, model, and analyze the diversity, complexity, and dynamics of human interaction conditions and processes and, therefore, promises greater empirical relevance and scientific power. An Appendix provides an elaboration of SGT, concluding that one of SGT’s major contributions is the rule based conceptualization of games as socially embedded with agents in social roles and role relationships and subject to cognitive-normative and agential regulation. SGT rules and rule complexes are based on contemporary developments relating to granular computing and Artificial Intelligence in general.Peer reviewe

    Heat Transfer Mechanism In Particle-Laden Turbulent Shearless Flows

    Get PDF
    Particle-laden turbulent flows are one of the complex flow regimes involved in a wide range of environmental, industrial, biomedical and aeronautical applications. Recently the interest has included also the interaction between scalars and particles, and the complex scenario which arises from the interaction of particle finite inertia, temperature transport, and momentum and heat feedback of particles on the flow leads to a multi-scale and multi-physics phenomenon which is not yet fully understood. The present work aims to investigate the fluid-particle thermal interaction in turbulent mixing under one-way and two-way coupling regimes. A recent novel numerical framework has been used to investigate the impact of suspended sub-Kolmogorov inertial particles on heat transfer within the mixing layer which develops at the interface of two regions with different temperature in an isotropic turbulent flow. Temperature has been considered a passive scalar, advected by the solenoidal velocity field, and subject to the particle thermal feedback in the two-way regime. A self-similar stage always develops where all single-point statistics of the carrier fluid and the suspended particles collapse when properly re-scaled. We quantify the effect of particle inertial, parametrized through the Stokes and thermal Stokes numbers, on the heat transfer through the Nusselt number, defined as the ratio of the heat transfer to the thermal diffusion. A scale analysis will be presented. We show how the modulation of fluid temperature gradients due to the statistical alignments of the particle velocity and the local carrier flow temperature gradient field, impacts the overall heat transfer in the two-way coupling regime

    SciTech News Volume 71, No. 1 (2017)

    Get PDF
    Columns and Reports From the Editor 3 Division News Science-Technology Division 5 Chemistry Division 8 Engineering Division Aerospace Section of the Engineering Division 9 Architecture, Building Engineering, Construction and Design Section of the Engineering Division 11 Reviews Sci-Tech Book News Reviews 12 Advertisements IEEE

    Smart Buildings

    Get PDF
    This talk presents an efficient cyberphysical platform for the smart management of smart buildings http://www.deepint.net. It is efficient because it facilitates the implementation of data acquisition and data management methods, as well as data representation and dashboard configuration. The platform allows for the use of any type of data source, ranging from the measurements of a multi-functional IoT sensing devices to relational and non-relational databases. It is also smart because it incorporates a complete artificial intelligence suit for data analysis; it includes techniques for data classification, clustering, forecasting, optimization, visualization, etc. It is also compatible with the edge computing concept, allowing for the distribution of intelligence and the use of intelligent sensors. The concept of smart building is evolving and adapting to new applications; the trend to create intelligent neighbourhoods, districts or territories is becoming increasingly popular, as opposed to the previous approach of managing an entire megacity. In this paper, the platform is presented, and its architecture and functionalities are described. Moreover, its operation has been validated in a case study at Salamanca - Ecocasa. This platform could enable smart building to develop adapted knowledge management systems, adapt them to new requirements and to use multiple types of data, and execute efficient computational and artificial intelligence algorithms. The platform optimizes the decisions taken by human experts through explainable artificial intelligence models that obtain data from IoT sensors, databases, the Internet, etc. The global intelligence of the platform could potentially coordinate its decision-making processes with intelligent nodes installed in the edge, which would use the most advanced data processing techniques
    • 

    corecore