44 research outputs found

    A Preliminary Investigation into a Deep Learning Implementation for Hand Tracking on Mobile Devices

    Get PDF
    Hand tracking is an essential component of computer graphics and human-computer interaction applications. The use of RGB camera without specific hardware and sensors (e.g., depth cameras) allows developing solutions for a plethora of devices and platforms. Although various methods were proposed, hand tracking from a single RGB camera is still a challenging research area due to occlusions, complex backgrounds, and various hand poses and gestures. We present a mobile application for 2D hand tracking from RGB images captured by the smartphone camera. The images are processed by a deep neural network, modified specifically to tackle this task and run on mobile devices, looking for a compromise between performance and computational time. Network output is used to show a 2D skeleton on the user's hand. We tested our system on several scenarios, showing an interactive hand tracking level and achieving promising results in the case of variable brightness and backgrounds and small occlusions

    The Future of Humanoid Robots

    Get PDF
    This book provides state of the art scientific and engineering research findings and developments in the field of humanoid robotics and its applications. It is expected that humanoids will change the way we interact with machines, and will have the ability to blend perfectly into an environment already designed for humans. The book contains chapters that aim to discover the future abilities of humanoid robots by presenting a variety of integrated research in various scientific and engineering fields, such as locomotion, perception, adaptive behavior, human-robot interaction, neuroscience and machine learning. The book is designed to be accessible and practical, with an emphasis on useful information to those working in the fields of robotics, cognitive science, artificial intelligence, computational methods and other fields of science directly or indirectly related to the development and usage of future humanoid robots. The editor of the book has extensive R&D experience, patents, and publications in the area of humanoid robotics, and his experience is reflected in editing the content of the book

    Command and Control Systems for Search and Rescue Robots

    Get PDF
    The novel application of unmanned systems in the domain of humanitarian Search and Rescue (SAR) operations has created a need to develop specific multi-Robot Command and Control (RC2) systems. This societal application of robotics requires human-robot interfaces for controlling a large fleet of heterogeneous robots deployed in multiple domains of operation (ground, aerial and marine). This chapter provides an overview of the Command, Control and Intelligence (C2I) system developed within the scope of Integrated Components for Assisted Rescue and Unmanned Search operations (ICARUS). The life cycle of the system begins with a description of use cases and the deployment scenarios in collaboration with SAR teams as end-users. This is followed by an illustration of the system design and architecture, core technologies used in implementing the C2I, iterative integration phases with field deployments for evaluating and improving the system. The main subcomponents consist of a central Mission Planning and Coordination System (MPCS), field Robot Command and Control (RC2) subsystems with a portable force-feedback exoskeleton interface for robot arm tele-manipulation and field mobile devices. The distribution of these C2I subsystems with their communication links for unmanned SAR operations is described in detail. Field demonstrations of the C2I system with SAR personnel assisted by unmanned systems provide an outlook for implementing such systems into mainstream SAR operations in the future

    Human Machine Interaction

    Get PDF
    In this book, the reader will find a set of papers divided into two sections. The first section presents different proposals focused on the human-machine interaction development process. The second section is devoted to different aspects of interaction, with a special emphasis on the physical interaction

    A review of computer vision-based approaches for physical rehabilitation and assessment

    Get PDF
    The computer vision community has extensively researched the area of human motion analysis, which primarily focuses on pose estimation, activity recognition, pose or gesture recognition and so on. However for many applications, like monitoring of functional rehabilitation of patients with musculo skeletal or physical impairments, the requirement is to comparatively evaluate human motion. In this survey, we capture important literature on vision-based monitoring and physical rehabilitation that focuses on comparative evaluation of human motion during the past two decades and discuss the state of current research in this area. Unlike other reviews in this area, which are written from a clinical objective, this article presents research in this area from a computer vision application perspective. We propose our own taxonomy of computer vision-based rehabilitation and assessment research which are further divided into sub-categories to capture novelties of each research. The review discusses the challenges of this domain due to the wide ranging human motion abnormalities and difficulty in automatically assessing those abnormalities. Finally, suggestions on the future direction of research are offered

    A Hybrid Visual Control Scheme to Assist the Visually Impaired with Guided Reaching Tasks

    Get PDF
    In recent years, numerous researchers have been working towards adapting technology developed for robotic control to use in the creation of high-technology assistive devices for the visually impaired. These types of devices have been proven to help visually impaired people live with a greater degree of confidence and independence. However, most prior work has focused primarily on a single problem from mobile robotics, namely navigation in an unknown environment. In this work we address the issue of the design and performance of an assistive device application to aid the visually-impaired with a guided reaching task. The device follows an eye-in-hand, IBLM visual servoing configuration with a single camera and vibrotactile feedback to the user to direct guided tracking during the reaching task. We present a model for the system that employs a hybrid control scheme based on a Discrete Event System (DES) approach. This approach avoids significant problems inherent in the competing classical control or conventional visual servoing models for upper limb movement found in the literature. The proposed hybrid model parameterizes the partitioning of the image state-space that produces a variable size targeting window for compensatory tracking in the reaching task. The partitioning is created through the positioning of hypersurface boundaries within the state space, which when crossed trigger events that cause DES-controller state transition that enable differing control laws. A set of metrics encompassing, accuracy (DD), precision (θe\theta_{e}), and overall tracking performance (ψ\psi) are also proposed to quantity system performance so that the effect of parameter variations and alternate controller configurations can be compared. To this end, a prototype called \texttt{aiReach} was constructed and experiments were conducted testing the functional use of the system and other supporting aspects of the system behaviour using participant volunteers. Results are presented validating the system design and demonstrating effective use of a two parameter partitioning scheme that utilizes a targeting window with additional hysteresis region to filtering perturbations due to natural proprioceptive limitations for precise control of upper limb movement. Results from the experiments show that accuracy performance increased with the use of the dual parameter hysteresis target window model (0.91D10.91 \leq D \leq 1, μ(D)=0.9644\mu(D)=0.9644, σ(D)=0.0172\sigma(D)=0.0172) over the single parameter fixed window model (0.82D0.980.82 \leq D \leq 0.98, μ(D)=0.9205\mu(D)=0.9205, σ(D)=0.0297\sigma(D)=0.0297) while the precision metric, θe\theta_{e}, remained relatively unchanged. In addition, the overall tracking performance metric produces scores which correctly rank the performance of the guided reaching tasks form most difficult to easiest
    corecore