2,000 research outputs found

    Powering a Biosensor Using Wearable Thermoelectric Technology

    Get PDF
    Wearable medical devices such as insulin pumps, glucose monitors, hearing aids, and electrocardiograms provide necessary medical aid and monitoring to millions of users worldwide. These battery powered devices require battery replacement and frequent charging that reduces the freedom and peace of mind of users. Additionally, the significant portion of the world without access to electricity is unable to use these medical devices as they have no means to power them constantly. Wearable thermoelectric power generation aims to charge these medical device batteries without a need for grid power. Our team has developing a wristband prototype that uses body heat, ambient air, and heat sinks to create a temperature difference across thermoelectric modules thus generating ultra-low voltage electrical power. A boost converter is implemented to boost this voltage to the level required by medical device batteries. Our goal was to use this generated power to charge medical device batteries off-the-grid, increasing medical device user freedom and allowing medical device access to those without electricity. We successfully constructed a wearable prototype that generates the voltage required by an electrocardiogram battery; however, further thermoelectric module and heat dissipation optimization is necessary to generate sufficient current to charge the battery

    Impaired perceptual learning in a mouse model of Fragile X syndrome is mediated by parvalbumin neuron dysfunction and is reversible.

    Get PDF
    To uncover the circuit-level alterations that underlie atypical sensory processing associated with autism, we adopted a symptom-to-circuit approach in the Fmr1-knockout (Fmr1-/-) mouse model of Fragile X syndrome. Using a go/no-go task and in vivo two-photon calcium imaging, we find that impaired visual discrimination in Fmr1-/- mice correlates with marked deficits in orientation tuning of principal neurons and with a decrease in the activity of parvalbumin interneurons in primary visual cortex. Restoring visually evoked activity in parvalbumin cells in Fmr1-/- mice with a chemogenetic strategy using designer receptors exclusively activated by designer drugs was sufficient to rescue their behavioral performance. Strikingly, human subjects with Fragile X syndrome exhibit impairments in visual discrimination similar to those in Fmr1-/- mice. These results suggest that manipulating inhibition may help sensory processing in Fragile X syndrome

    analysis of the requirements of an early life cycle cost estimation tool an industrial survey

    Get PDF
    Abstract Cost estimation is a critical issue for many companies concerning both offers generation and company strategic evaluations. In this paper, a framework for early cost estimation has been proposed to some firms for an assessment of its main features. The aim of the industrial survey is to promote a discussion on the needs and the expectations regarding cost estimation in order to obtain feedbacks to be addresses in the implementation of a software tool. Gather data has led to a ranking of the main characteristics the tool should have

    Intelligent conceptual mould layout design system (ICMLDS) : innovation report

    Get PDF
    Family Mould Cavity Runner Layout Design (FMCRLD) is the most demanding and critical task in the early Conceptual Mould Layout Design (CMLD) phase. Traditional experience-dependent manual FCMRLD workflow results in long design lead time, non-optimum designs and costs of errors. However, no previous research, existing commercial software packages or patented technologies can support FMCRLD automation and optimisation. The nature of FMCRLD is non-repetitive and generative. The complexity of FMCRLD optimisation involves solving a complex two-level combinatorial layout design optimisation problem. This research first developed the Intelligent Conceptual Mould Layout Design System (ICMLDS) prototype based on the innovative nature-inspired evolutionary FCMRLD approach for FMCRLD automation and optimisation using Genetic Algorithm (GA) and Shape Grammar (SG). The ICMLDS prototype has been proven to be a powerful intelligent design tool as well as an interactive design-training tool that can encourage and accelerate mould designers’ design alternative exploration, exploitation and optimisation for better design in less time. This previously unavailable capability enables the supporting company not only to innovate the existing traditional mould making business but also to explore new business opportunities in the high-value low-volume market (such as telecommunication, consumer electronic and medical devices) of high precision injection moulding parts. On the other hand, the innovation of this research also provides a deeper insight into the art of evolutionary design and expands research opportunities in the evolutionary design approach into a wide variety of new application areas including hot runner layout design, ejector layout design, cooling layout design and architectural space layout design

    Self-Scaling Evolution of Analog Computation Circuits

    Get PDF
    Energy and performance improvements of continuous-time analog-based computation for selected applications offer an avenue to continue improving the computational ability of tomorrow*s electronic devices at current technology scaling limits. However, analog computation is plagued by the difficulty of designing complex computational circuits, programmability, as well as the inherent lack of accuracy and precision when compared to digital implementations. In this thesis, evolutionary algorithm-based techniques are utilized within a reconfigurable analog fabric to realize an automated method of designing analog-based computational circuits while adapting the functional range to improve performance. A Self-Scaling Genetic Algorithm is proposed to adapt solutions to computationally-tractable ranges in hardware-constrained analog reconfigurable fabrics. It operates by utilizing a Particle Swarm Optimization (PSO) algorithm that operates synergistically with a Genetic Algorithm (GA) to adaptively scale and translate the functional range of computational circuits composed of high-level or low-level Computational Analog Elements to improve performance and realize functionality otherwise unobtainable on the intrinsic platform. The technique is demonstrated by evolving square, square-root, cube, and cube-root analog computational circuits on the Cypress PSoC-5LP System-on-Chip. Results indicate that the Self-Scaling Genetic Algorithm improves our error metric on average 7.18-fold, up to 12.92-fold for computational circuits that produce outputs beyond device range. Results were also favorable compared to previous works, which utilized extrinsic evolution of circuits with much greater complexity than was possible on the PSoC-5LP

    A Company-led Methodology for the Specification of Product Design Capabilities in Small and Medium Sized Electronics Companies

    Get PDF
    It is the aim of the research reported in this thesis to improve the product design effectiveness of small and medium sized electronics companies in the United Kingdom. It does so by presenting a methodology for use by such firms which will enable them to specify product design capabilities which are resilient to changes in their respective business environments. The research has not, however, concerned itself with the details of particular electronics component technologies or with the advantages of various CAD or CAE products, although these are both important aspects of any design capability. Nor is it concerned with the implementation of the product design capability. The methodology, which represents a significant improvement on current practice, is a structured, company-driven approach which draws extensively upon the lessons of international design best practice. It uses well-proven tools and techniques to guide firms through the entire process of creating such capabilities - from the development of an appropriate Mission Statement to the identification of cost effective and appropriate design system solutions which can readily be translated into action plans for improvement. The work emphasises the importance of adopting a holistic, systems approach which acknowledges the interrelationship between the management of the design process, as well as its operational and supporting activities. The research has been structured around the experiences of companies which have implemented electronics design systems and which "own" the problem in question. Hence, a research strategy was adopted which was based upon a case study approach and upon the development of close collaborative links with two leading design automation tool vendor companies. Case study interviews were undertaken in 18 U.K. and European electronics companies and in 11 U.S., Japanese and Korean electronics firms. The work proceeded in two distinct phases. Firstly, the author participated with other researchers to jointly develop a functional specification of an electronics designers' toolset to support the process of product design in an integrated manufacturing environment. The first phase provided the context for Phase 2, the development of the AGILITY methodology for specifying product design capabilities which represents the author's individual contribution. The contribution to knowledge made by the research lies in the creation of a process methodology which, for the first time, will help U.K. electronics companies to define for themselves product design capabilities which are robust and which support their wider business objectives. No such methodology is currently available in a form which is both accessible and affordable to smaller firms. Furthermore, the author has uncovered no evidence of the existence of such a methodology even for use by large electronics firms. Validation of the methodology is subject to an ongoing process of feedback.Racal Redac Lt

    A Knowledge-Based Engineering System Framework for the Development of Electric Machines

    Get PDF
    The new concept industry 4.0 is a great opportunity to improve the competitiveness in a global market for small-medium size electric machinery companies. The demand for electric motors have increased in the last decade especially due to applications that try to make a full transition from fuel to electricity. These applications encounter the need for tailor-made motors that must meet demanding requirements. Therefore, it is mandatory small-medium companies adopt new technologies offering customized products fulfilling the customers’ requirements according to their investment capacity. Furthermore, simplify their development process as well as to reduce computational time to achieve a feasible design in shorter periods. In addition, find ways to retain know-how that is typically kept within each designer either to retrieve it or transfer it to new designers. To support the aforementioned issue, a knowledge-based engineering (KBE) system framework for the development of electric machines is devised. The framework is encapsulated in the so-called KBV2-model comprising the standardized macro-level framework for electrical machine and the knowledge base generation process. This thesis describes this model and the integration of KBE applications with current industrial technologies such as Model-Based Systems Engineering (MBSE), Product Lifecycle Management (PLM), multiphysics and analytical design tools. This architecture provides capability to manage and automate tasks in the development process of electric machines. The author of this work has opted to develop KBE applications following the minimum viable product principle. The KBE system framework herein presented is formalized through the experience and analysis of the development and implementation of the KBE applications. From which a guideline is provided following a sequential process in order to achieve a viable KBE system. To substantiate the process a KBE system is created that supports the development of electric motors for the elevator system industry
    corecore