76 research outputs found

    Automatic Segmentation of Intramedullary Multiple Sclerosis Lesions

    Get PDF
    Contexte: La moelle Ă©piniĂšre est un composant essentiel du systĂšme nerveux central. Elle contient des neurones responsables d’importantes fonctionnalitĂ©s et assure la transmission d’informations motrices et sensorielles entre le cerveau et le systĂšme nerveux pĂ©riphĂ©rique. Un endommagement de la moelle Ă©piniĂšre, causĂ© par un choc ou une maladie neurodĂ©gĂ©nĂ©rative, peut mener Ă  un sĂ©rieux handicap, pouvant entraĂźner des incapacitĂ©s fonctionnelles, de la paralysie et/ou de la douleur. Chez les patients atteints de sclĂ©rose en plaques (SEP), la moelle Ă©piniĂšre est frĂ©quemment affectĂ©e par de l’atrophie et/ou des lĂ©sions. L’imagerie par rĂ©sonance magnĂ©tique (IRM) conventionnelle est largement utilisĂ©e par des chercheurs et des cliniciens pour Ă©valuer et caractĂ©riser, de façon non-invasive, des altĂ©rations micro-structurelles. Une Ă©valuation quantitative des atteintes structurelles portĂ©es Ă  la moelle Ă©piniĂšre (e.g. sĂ©vĂ©ritĂ© de l’atrophie, extension des lĂ©sions) est essentielle pour le diagnostic, le pronostic et la supervision sur le long terme de maladies, telles que la SEP. De plus, le dĂ©veloppement de biomarqueurs impartiaux est indispensable pour Ă©valuer l’effet de nouveaux traitements thĂ©rapeutiques. La segmentation de la moelle Ă©piniĂšre et des lĂ©sions intramĂ©dullaires de SEP sont, par consĂ©quent, pertinentes d’un point de vue clinique, aussi bien qu’une Ă©tape nĂ©cessaire vers l’interprĂ©tation d’images RM multiparamĂ©triques. Cependant, la segmentation manuelle est une tĂąche extrĂȘmement chronophage, fastidieuse et sujette Ă  des variations inter- et intra-expert. Il y a par consĂ©quent un besoin d’automatiser les mĂ©thodes de segmentations, ce qui pourrait faciliter l’efficacitĂ© procĂ©dures d’analyses. La segmentation automatique de lĂ©sions est compliquĂ© pour plusieurs raisons: (i) la variabilitĂ© des lĂ©sions en termes de forme, taille et position, (ii) les contours des lĂ©sions sont la plupart du temps difficilement discernables, (iii) l’intensitĂ© des lĂ©sions sur des images MR sont similaires Ă  celles de structures visiblement saines. En plus de cela, rĂ©aliser une segmentation rigoureuse sur l’ensemble d’une base de donnĂ©es multi-centrique d’IRM est rendue difficile par l’importante variabilitĂ© des protocoles d’acquisition (e.g. rĂ©solution, orientation, champ de vue de l’image). MalgrĂ© de considĂ©rables rĂ©cents dĂ©veloppements dans le traitement d’images MR de moelle Ă©piniĂšre, il n’y a toujours pas de mĂ©thode disponible pouvant fournir une segmentation rigoureuse et fiable de la moelle Ă©piniĂšre pour un large spectre de pathologies et de protocoles d’acquisition. Concernant les lĂ©sions intramĂ©dullaires, une recherche approfondie dans la littĂ©rature n’a pas pu fournir une mĂ©thode disponible de segmentation automatique. Objectif: DĂ©velopper un systĂšme complĂštement automatique pour segmenter la moelle Ă©piniĂšre et les lĂ©sions intramĂ©dullaires sur des IRM conventionnelles humaines. MĂ©thode: L’approche prĂ©sentĂ©e est basĂ©e de deux rĂ©seaux de neurones Ă  convolution mis en cascade. La mĂ©thode a Ă©tĂ© pensĂ©e pour faire face aux principaux obstacles que prĂ©sentent les donnĂ©es IRM de moelle Ă©piniĂšre. Le procĂ©dĂ© de segmentation a Ă©tĂ© entrainĂ© et validĂ© sur une base de donnĂ©es privĂ©e composĂ©e de 1943 images, acquises dans 30 diffĂ©rents centres avec des protocoles hĂ©tĂ©rogĂšnes. Les sujets scannĂ©s comportent 459 sujets sains, 471 patients SEP et 112 avec d’autres pathologies affectant la moelle Ă©piniĂšre. Le module de segmentation de la moelle Ă©piniĂšre a Ă©tĂ© comparĂ© Ă  une mĂ©thode existante reconnue par la communautĂ©, PropSeg. RĂ©sultats: L’approche basĂ©e sur les rĂ©seaux de neurones Ă  convolution a fourni de meilleurs rĂ©sultats que PropSeg, atteignant un Dice mĂ©dian (intervalle inter-quartiles) de 94.6 (4.6) vs. 87.9 (18.3) %. Pour les lĂ©sions, notre segmentation automatique a permis d'obtenir un Dice de 60.0 (21.4) % en le comparant Ă  la segmentation manuelle, un ratio de vrai positifs de 83 (34) %, et une prĂ©cision de 77 (44) %. Conclusion: Une mĂ©thode complĂštement automatique et innovante pour segmenter la moelle Ă©piniĂšre et les lĂ©sions SEP intramĂ©dullaires sur des donnĂ©es IRM a Ă©tĂ© conçue durant ce projet de maĂźtrise. La mĂ©thode a Ă©tĂ© abondamment validĂ©e sur une base de donnĂ©es clinique. La robustesse de la mĂ©thode de segmentation de moelle Ă©piniĂšre a Ă©tĂ© dĂ©montrĂ©e, mĂȘme sur des cas pathologiques. Concernant la segmentation des lĂ©sions, les rĂ©sultats sont encourageants, malgrĂ© un taux de faux positifs relativement Ă©levĂ©. Je crois en l’impact que peut potentiellement avoir ces outils pour la communautĂ© de chercheurs. Dans cette optique, les mĂ©thodes ont Ă©tĂ© intĂ©grĂ©es et documentĂ©es dans un logiciel en accĂšs-ouvert, la “Spinal Cord Toolbox”. Certains des outils dĂ©veloppĂ©s pendant ce projet de MaĂźtrise sont dĂ©jĂ  utilisĂ©s par des analyses d’études cliniques, portant sur des patients SEP et sclĂ©rose latĂ©rale amyotrophique.----------ABSTRACT Context: The spinal cord is a key component of the central nervous system, which contains neurons responsible for complex functions, and ensures the conduction of motor and sensory information between the brain and the peripheral nervous system. Damage to the spinal cord, through trauma or neurodegenerative diseases, can lead to severe impairment, including functional disabilities, paralysis and/or pain. In multiple sclerosis (MS) patients, the spinal cord is frequently affected by atrophy and/or lesions. Conventional magnetic resonance imaging (MRI) is widely used by researchers and clinicians to non-invasively assess and characterize spinal cord microstructural changes. Quantitative assessment of the structural damage to the spinal cord (e.g. atrophy severity, lesion extent) is essential for the diagnosis, prognosis and longitudinal monitoring of diseases, such as MS. Furthermore, the development of objective biomarkers is essential to evaluate the effect of new therapeutic treatments. Spinal cord and intramedullary MS lesions segmentation is consequently clinically relevant, as well as a necessary step towards the interpretation of multi-parametric MR images. However, manual segmentation is highly time-consuming, tedious and prone to intra- and inter-rater variability. There is therefore a need for automated segmentation methods to facilitate the efficiency of analysis pipelines. Automatic lesion segmentation is challenging for various reasons: (i) lesion variability in terms of shape, size and location, (ii) lesion boundaries are most of the time not well defined, (iii) lesion intensities on MR data are confounding with those of normal-appearing structures. Moreover, achieving robust segmentation across multi-center MRI data is challenging because of the broad variability of data features (e.g. resolution, orientation, field of view). Despite recent substantial developments in spinal cord MRI processing, there is still no method available that can yield robust and reliable spinal cord segmentation across the very diverse spinal pathologies and data features. Regarding the intramedullary lesions, a thorough search of the relevant literature did not yield available method of automatic segmentation. Goal: To develop a fully-automatic framework for segmenting the spinal cord and intramedullary MS lesions from conventional human MRI data. Method: The presented approach is based on a cascade of two Convolutional Neural Networks (CNN). The method has been designed to face the main challenges of ‘real world’ spinal cord MRI data. It was trained and validated on a private dataset made up of 1943 MR volumes, acquired in different 30 sites with heterogeneous acquisition protocols. Scanned subjects involve 459 healthy controls, 471 MS patients and 112 with other spinal pathologies. The proposed spinal cord segmentation method was compared to a state-of-the-art spinal cord segmentation method, PropSeg. Results: The CNN-based approach achieved better results than PropSeg, yielding a median (interquartile range) Dice of 94.6 (4.6) vs. 87.9 (18.3) % when compared to the manual segmentation. For the lesion segmentation task, our method provided a median Dice-overlap with the manual segmentation of 60.0 (21.4) %, a lesion-based true positive rate of 83 (34) % and a lesion-based precision de 77 (44) %. Conclusion: An original fully-automatic method to segment the spinal cord and intramedullary MS lesions on MRI data has been devised during this Master’s project. The method was validated extensively against a clinical dataset. The robustness of the spinal cord segmentation has been demonstrated, even on challenging pathological cases. Regarding the lesion segmentation, the results are encouraging despite the fairly high false positive rate. I believe in the potential value of these developed tools for the research community. In this vein, the methods are integrated and documented into an open-source software, the Spinal Cord Toolbox. Some of the tools developed during this Master’s project are already integrated into automated analysis pipelines of clinical studies, including MS and Amyotrophic Lateral Sclerosis patients

    Deep learning approaches for segmentation of multiple sclerosis lesions on brain MRI

    Get PDF
    Multiple Sclerosis (MS) is a demyelinating disease of the central nervous system which causes lesions in brain tissues, especially visible in white matter with magnetic resonance imaging (MRI). The diagnosis of MS lesions, which is often performed visually with MRI, is an important task as it can help characterizing the progression of the disease and monitoring the efficacy of a candidate treatment. automatic detection and segmentation of MS lesions from MRI images offer the potential for a faster and more cost-effective performance which could also be immune to expert bias segmentation. In this thesis, we study automated approaches to segment MS lesions from MRI images. The thesis begins with a review of the existing literature on MS lesion segmentation and discusses their general limitations. We then propose three novel approaches that rely on Convolutional Neural Networks (CNNs) to segment MS lesions. The first approach demonstrates that the parameters of a CNN learned from natural images, transfer well to the tasks of MS lesion segmentation. In the second approach, we describe a novel multi-branch CNN architecture with end-to-end training that can take advantage of each MRI modalities individually. In that work, we also investigated the combination of MRI modalities leading to the best segmentation performance. In the third approach, we show an effective and novel generalization method for MS lesion segmentation when data are collected from multiple MRI scanning sites and as suffer from (site-)domain shifts. Finally, this thesis concludes with open questions that may benefit from future work. This thesis demonstrates the potential role of CNNs as a common methodological building block to address clinical problems in MS segmentation

    Automated segmentation and characterisation of white matter hyperintensities

    Get PDF
    Neuroimaging has enabled the observation of damage to the white matter that occurs frequently in elderly population and is depicted as hyperintensities in specific magnetic resonance images. Since the pathophysiology underlying the existence of these signal abnormalities and the association with clinical risk factors and outcome is still investigated, a robust and accurate quantification and characterisation of these observations is necessary. In this thesis, I developed a data-driven split and merge model selection framework that results in the joint modelling of normal appearing and outlier observations in a hierarchical Gaussian mixture model. The resulting model can then be used to segment white matter hyperintensities (WMH) in a post-processing step. The validity of the method in terms of robustness to data quality, acquisition protocol and preprocessing and its comparison to the state of the art is evaluated in both simulated and clinical settings. To further characterise the lesions, a subject-specific coordinate frame that divides the WM region according to the relative distance between the ventricular surface and the cortical sheet and to the lobar location is introduced. This coordinate frame is used for the comparison of lesion distributions in a population of twin pairs and for the prediction and standardisation of visual rating scales. Lastly the cross-sectional method is extended into a longitudinal framework, in which a Gaussian Mixture model built on an average image is used to constrain the representation of the individual time points. The method is validated through a purpose-build longitudinal lesion simulator and applied to the investigation of the relationship between APOE genetic status and lesion load progression

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Exploring variability in medical imaging

    Get PDF
    Although recent successes of deep learning and novel machine learning techniques improved the perfor- mance of classification and (anomaly) detection in computer vision problems, the application of these methods in medical imaging pipeline remains a very challenging task. One of the main reasons for this is the amount of variability that is encountered and encapsulated in human anatomy and subsequently reflected in medical images. This fundamental factor impacts most stages in modern medical imaging processing pipelines. Variability of human anatomy makes it virtually impossible to build large datasets for each disease with labels and annotation for fully supervised machine learning. An efficient way to cope with this is to try and learn only from normal samples. Such data is much easier to collect. A case study of such an automatic anomaly detection system based on normative learning is presented in this work. We present a framework for detecting fetal cardiac anomalies during ultrasound screening using generative models, which are trained only utilising normal/healthy subjects. However, despite the significant improvement in automatic abnormality detection systems, clinical routine continues to rely exclusively on the contribution of overburdened medical experts to diagnosis and localise abnormalities. Integrating human expert knowledge into the medical imaging processing pipeline entails uncertainty which is mainly correlated with inter-observer variability. From the per- spective of building an automated medical imaging system, it is still an open issue, to what extent this kind of variability and the resulting uncertainty are introduced during the training of a model and how it affects the final performance of the task. Consequently, it is very important to explore the effect of inter-observer variability both, on the reliable estimation of model’s uncertainty, as well as on the model’s performance in a specific machine learning task. A thorough investigation of this issue is presented in this work by leveraging automated estimates for machine learning model uncertainty, inter-observer variability and segmentation task performance in lung CT scan images. Finally, a presentation of an overview of the existing anomaly detection methods in medical imaging was attempted. This state-of-the-art survey includes both conventional pattern recognition methods and deep learning based methods. It is one of the first literature surveys attempted in the specific research area.Open Acces

    NEW CHANGE DETECTION MODELS FOR OBJECT-BASED ENCODING OF PATIENT MONITORING VIDEO

    Get PDF
    The goal of this thesis is to find a highly efficient algorithm to compress patient monitoring video. This type of video mainly contains local motions and a large percentage of idle periods. To specifically utilize these features, we present an object-based approach, which decomposes input video into three objects representing background, slow-motion foreground and fast-motion foreground. Encoding these three video objects with different temporal scalabilities significantly improves the coding efficiency in terms of bitrate vs. visual quality. The video decomposition is built upon change detection which identifies content changes between video frames. To improve the robustness of capturing small changes, we contribute two new change detection models. The model built upon Markov random theory discriminates foreground containing the patient being monitored. The other model, called covariance test method, identifies constantly changing content by exploiting temporal correlation in multiple video frames. Both models show great effectiveness in constructing the defined video objects. We present detailed algorithms of video object construction, as well as experimental results on the object-based coding of patient monitoring video

    Detection and classification of neurodegenerative diseases: a spatially informed bayesian deep learning approach

    Get PDF
    Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial TechnologiesNeurodegenerative diseases comprise a group of chronic and irreversible conditions characterized by the progressive degeneration of the structure and function of the central nervous system. The detection and classification of patients according to the underlying disease are crucial for developing oriented treatments and enriching prognosis. In this context, Magnetic resonance imaging (MRI) data can provide meaningful insights into neurodegeneration by detecting the physiological manifestations in the brain caused by the disease processes. One field of extensive clinical use of MRI is the accurate and automated classification of neurodegenerative disorders. Most studies distinguish patients from healthy subjects or stages within the same disease. Such distinction does not mirror clinical practice, as a patient may not show all symptoms, especially if the disease is in an early stage, or show, due to comorbidities, other symptoms as well. Likewise, automated classifiers are partly suited for medical diagnosis since they cannot produce probabilistic predictions nor account for uncertainty. Also, existent studies ignore the spatial heterogeneity of the brain alterations caused by neurodegenerative processes. The spatial configuration of the neuronal loss is a characteristic hallmark for each disorder. To fill these gaps, this thesis aims to develop a classification technique that incorporates uncertainty and spatial information for distinguishing four neurodegenerative diseases, Alzheimer’s disease, Mild cognitive impairment, Parkinson’s disease and Multiple Sclerosis, and healthy subjects. This technique will produce automated, contingent, and accurate predictions to support clinical diagnosis. To quantify prediction uncertainty and improve classification accuracy, this study introduces a Bayesian neural network with a spatially informed input. A convolutional neural network (CNN) is developed to identify a neurodegenerative condition based on T1weighted MRI scans from patients and healthy controls. Bayesian inference is incorporated into the CNN to measure uncertainty and produce probabilistic predictions. Also, a spatially informed MRI scan is added to the CNN to improve feature detection and classification accuracy. The Spatially informed Bayesian Neural Network (SBNN) proposed in this work demonstrates that classification accuracy can be increased up to 25% by including the spatially informed MRI scan. Furthermore, the SBNN provides robust probabilistic diagnosis that resembles clinical decision-making and accounts for atypical, numerous, and early presentations of neurodegenerative disorders
    • 

    corecore