90 research outputs found

    An exploration of the rhythm of Malay

    Get PDF
    In recent years there has been a surge of interest in speech rhythm. However we still lack a clear understanding of the nature of rhythm and rhythmic differences across languages. Various metrics have been proposed as means for measuring rhythm on the phonetic level and making typological comparisons between languages (Ramus et al, 1999; Grabe & Low, 2002; Dellwo, 2006) but the debate is ongoing on the extent to which these metrics capture the rhythmic basis of speech (Arvaniti, 2009; Fletcher, in press). Furthermore, cross linguistic studies of rhythm have covered a relatively small number of languages and research on previously unclassified languages is necessary to fully develop the typology of rhythm. This study examines the rhythmic features of Malay, for which, to date, relatively little work has been carried out on aspects rhythm and timing. The material for the analysis comprised 10 sentences produced by 20 speakers of standard Malay (10 males and 10 females). The recordings were first analysed using rhythm metrics proposed by Ramus et. al (1999) and Grabe & Low (2002). These metrics (∆C, %V, rPVI, nPVI) are based on durational measurements of vocalic and consonantal intervals. The results indicated that Malay clustered with other so-called syllable-timed languages like French and Spanish on the basis of all metrics. However, underlying the overall findings for these metrics there was a large degree of variability in values across speakers and sentences, with some speakers having values in the range typical of stressed-timed languages like English. Further analysis has been carried out in light of Fletcher’s (in press) argument that measurements based on duration do not wholly reflect speech rhythm as there are many other factors that can influence values of consonantal and vocalic intervals, and Arvaniti’s (2009) suggestion that other features of speech should also be considered in description of rhythm to discover what contributes to listeners’ perception of regularity. Spectrographic analysis of the Malay recordings brought to light two parameters that displayed consistency and regularity for all speakers and sentences: the duration of individual vowels and the duration of intervals between intensity minima. This poster presents the results of these investigations and points to connections between the features which seem to be consistently regulated in the timing of Malay connected speech and aspects of Malay phonology. The results are discussed in light of current debate on the descriptions of rhythm

    Arabic Isolated Word Speaker Dependent Recognition System

    Get PDF
    In this thesis we designed a new Arabic isolated word speaker dependent recognition system based on a combination of several features extraction and classifications techniques. Where, the system combines the methods outputs using a voting rule. The system is implemented with a graphic user interface under Matlab using G62 Core I3/2.26 Ghz processor laptop. The dataset used in this system include 40 Arabic words recorded in a calm environment with 5 different speakers using laptop microphone. Each speaker will read each word 8 times. 5 of them are used in training and the remaining are used in the test phase. First in the preprocessing step we used an endpoint detection technique based on energy and zero crossing rates to identify the start and the end of each word and remove silences then we used a discrete wavelet transform to remove noise from signal. In order to accelerate the system and reduce the execution time we make the system first to recognize the speaker and load only the reference model of that user. We compared 5 different methods which are pairwise Euclidean distance with MelFrequency cepstral coefficients (MFCC), Dynamic Time Warping (DTW) with Formants features, Gaussian Mixture Model (GMM) with MFCC, MFCC+DTW and Itakura distance with Linear Predictive Coding features (LPC) and we got a recognition rate of 85.23%, 57% , 87%, 90%, 83% respectively. In order to improve the accuracy of the system, we tested several combinations of these 5 methods. We find that the best combination is MFCC | Euclidean + Formant | DTW + MFCC | DTW + LPC | Itakura with an accuracy of 94.39% but with large computation time of 2.9 seconds. In order to reduce the computation time of this hybrid, we compare several subcombination of it and find that the best performance in trade off computation time is by first combining MFCC | Euclidean + LPC | Itakura and only when the two methods do not match the system will add Formant | DTW + MFCC | DTW methods to the combination, where the average computation time is reduced to the half to 1.56 seconds and the system accuracy is improved to 94.56%. Finally, the proposed system is good and competitive compared with other previous researches

    Models and analysis of vocal emissions for biomedical applications

    Get PDF
    This book of Proceedings collects the papers presented at the 3rd International Workshop on Models and Analysis of Vocal Emissions for Biomedical Applications, MAVEBA 2003, held 10-12 December 2003, Firenze, Italy. The workshop is organised every two years, and aims to stimulate contacts between specialists active in research and industrial developments, in the area of voice analysis for biomedical applications. The scope of the Workshop includes all aspects of voice modelling and analysis, ranging from fundamental research to all kinds of biomedical applications and related established and advanced technologies

    Pitch and spectral analysis of speech based on an auditory synchrony model

    Get PDF
    Also issued as Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1985.Includes bibliographical references (p. 228-235).Supported in part by the National Institutes of Health. 5 T32 NS07040Stephanie Seneff
    • …
    corecore