2,668 research outputs found

    Introduction to the special issue on cross-language algorithms and applications

    Get PDF
    With the increasingly global nature of our everyday interactions, the need for multilingual technologies to support efficient and efective information access and communication cannot be overemphasized. Computational modeling of language has been the focus of Natural Language Processing, a subdiscipline of Artificial Intelligence. One of the current challenges for this discipline is to design methodologies and algorithms that are cross-language in order to create multilingual technologies rapidly. The goal of this JAIR special issue on Cross-Language Algorithms and Applications (CLAA) is to present leading research in this area, with emphasis on developing unifying themes that could lead to the development of the science of multi- and cross-lingualism. In this introduction, we provide the reader with the motivation for this special issue and summarize the contributions of the papers that have been included. The selected papers cover a broad range of cross-lingual technologies including machine translation, domain and language adaptation for sentiment analysis, cross-language lexical resources, dependency parsing, information retrieval and knowledge representation. We anticipate that this special issue will serve as an invaluable resource for researchers interested in topics of cross-lingual natural language processing.Postprint (published version

    Improving the translation environment for professional translators

    Get PDF
    When using computer-aided translation systems in a typical, professional translation workflow, there are several stages at which there is room for improvement. The SCATE (Smart Computer-Aided Translation Environment) project investigated several of these aspects, both from a human-computer interaction point of view, as well as from a purely technological side. This paper describes the SCATE research with respect to improved fuzzy matching, parallel treebanks, the integration of translation memories with machine translation, quality estimation, terminology extraction from comparable texts, the use of speech recognition in the translation process, and human computer interaction and interface design for the professional translation environment. For each of these topics, we describe the experiments we performed and the conclusions drawn, providing an overview of the highlights of the entire SCATE project

    Adaptation of machine translation for multilingual information retrieval in the medical domain

    Get PDF
    Objective. We investigate machine translation (MT) of user search queries in the context of cross-lingual information retrieval (IR) in the medical domain. The main focus is on techniques to adapt MT to increase translation quality; however, we also explore MT adaptation to improve eectiveness of cross-lingual IR. Methods and Data. Our MT system is Moses, a state-of-the-art phrase-based statistical machine translation system. The IR system is based on the BM25 retrieval model implemented in the Lucene search engine. The MT techniques employed in this work include in-domain training and tuning, intelligent training data selection, optimization of phrase table configuration, compound splitting, and exploiting synonyms as translation variants. The IR methods include morphological normalization and using multiple translation variants for query expansion. The experiments are performed and thoroughly evaluated on three language pairs: Czech–English, German–English, and French–English. MT quality is evaluated on data sets created within the Khresmoi project and IR eectiveness is tested on the CLEF eHealth 2013 data sets. Results. The search query translation results achieved in our experiments are outstanding – our systems outperform not only our strong baselines, but also Google Translate and Microsoft Bing Translator in direct comparison carried out on all the language pairs. The baseline BLEU scores increased from 26.59 to 41.45 for Czech–English, from 23.03 to 40.82 for German–English, and from 32.67 to 40.82 for French–English. This is a 55% improvement on average. In terms of the IR performance on this particular test collection, a significant improvement over the baseline is achieved only for French–English. For Czech–English and German–English, the increased MT quality does not lead to better IR results. Conclusions. Most of the MT techniques employed in our experiments improve MT of medical search queries. Especially the intelligent training data selection proves to be very successful for domain adaptation of MT. Certain improvements are also obtained from German compound splitting on the source language side. Translation quality, however, does not appear to correlate with the IR performance – better translation does not necessarily yield better retrieval. We discuss in detail the contribution of the individual techniques and state-of-the-art features and provide future research directions

    Applying digital content management to support localisation

    Get PDF
    The retrieval and presentation of digital content such as that on the World Wide Web (WWW) is a substantial area of research. While recent years have seen huge expansion in the size of web-based archives that can be searched efficiently by commercial search engines, the presentation of potentially relevant content is still limited to ranked document lists represented by simple text snippets or image keyframe surrogates. There is expanding interest in techniques to personalise the presentation of content to improve the richness and effectiveness of the user experience. One of the most significant challenges to achieving this is the increasingly multilingual nature of this data, and the need to provide suitably localised responses to users based on this content. The Digital Content Management (DCM) track of the Centre for Next Generation Localisation (CNGL) is seeking to develop technologies to support advanced personalised access and presentation of information by combining elements from the existing research areas of Adaptive Hypermedia and Information Retrieval. The combination of these technologies is intended to produce significant improvements in the way users access information. We review key features of these technologies and introduce early ideas for how these technologies can support localisation and localised content before concluding with some impressions of future directions in DCM

    Adapting SMT Query Translation Reranker to New Languages in Cross-Lingual Information Retrieval

    Get PDF
    We investigate adaptation of a supervised machine learning model for reranking of query translations to new languages in the context of cross-lingual information retrieval. The model is trained to rerank multiple translations produced by a statistical machine translation system and optimize retrieval quality. The model features do not depend on the source language and thus allow the model to be trained on query translations coming from multiple languages. In this paper, we explore how this affects the final retrieval quality. The experiments are conducted on medical-domain test collection in English and multilingual queries (in Czech, German, French) from the CLEF eHealth Lab series 2013--2015. We adapt our method to allow reranking of query translations for four new languages (Spanish, Hungarian, Polish, Swedish). The baseline approach, where a single model is trained for each source language on query translations from that language, is compared with a model co-trained on translations from the three original languages

    Language technologies for a multilingual Europe

    Get PDF
    This volume of the series “Translation and Multilingual Natural Language Processing” includes most of the papers presented at the Workshop “Language Technology for a Multilingual Europe”, held at the University of Hamburg on September 27, 2011 in the framework of the conference GSCL 2011 with the topic “Multilingual Resources and Multilingual Applications”, along with several additional contributions. In addition to an overview article on Machine Translation and two contributions on the European initiatives META-NET and Multilingual Web, the volume includes six full research articles. Our intention with this workshop was to bring together various groups concerned with the umbrella topics of multilingualism and language technology, especially multilingual technologies. This encompassed, on the one hand, representatives from research and development in the field of language technologies, and, on the other hand, users from diverse areas such as, among others, industry, administration and funding agencies. The Workshop “Language Technology for a Multilingual Europe” was co-organised by the two GSCL working groups “Text Technology” and “Machine Translation” (http://gscl.info) as well as by META-NET (http://www.meta-net.eu)

    Searching to Translate and Translating to Search: When Information Retrieval Meets Machine Translation

    Get PDF
    With the adoption of web services in daily life, people have access to tremendous amounts of information, beyond any human's reading and comprehension capabilities. As a result, search technologies have become a fundamental tool for accessing information. Furthermore, the web contains information in multiple languages, introducing another barrier between people and information. Therefore, search technologies need to handle content written in multiple languages, which requires techniques to account for the linguistic differences. Information Retrieval (IR) is the study of search techniques, in which the task is to find material relevant to a given information need. Cross-Language Information Retrieval (CLIR) is a special case of IR when the search takes place in a multi-lingual collection. Of course, it is not helpful to retrieve content in languages the user cannot understand. Machine Translation (MT) studies the translation of text from one language into another efficiently (within a reasonable amount of time) and effectively (fluent and retaining the original meaning), which helps people understand what is being written, regardless of the source language. Putting these together, we observe that search and translation technologies are part of an important user application, calling for a better integration of search (IR) and translation (MT), since these two technologies need to work together to produce high-quality output. In this dissertation, the main goal is to build better connections between IR and MT, for which we present solutions to two problems: Searching to translate explores approximate search techniques for extracting bilingual data from multilingual Wikipedia collections to train better translation models. Translating to search explores the integration of a modern statistical MT system into the cross-language search processes. In both cases, our best-performing approach yielded improvements over strong baselines for a variety of language pairs. Finally, we propose a general architecture, in which various components of IR and MT systems can be connected together into a feedback loop, with potential improvements to both search and translation tasks. We hope that the ideas presented in this dissertation will spur more interest in the integration of search and translation technologies

    Cross-lingual document retrieval categorisation and navigation based on distributed services

    Get PDF
    The widespread use of the Internet across countries has increased the need for access to document collections that are often written in languages different from a user’s native language. In this paper we describe Clarity, a Cross Language Information Retrieval (CLIR) system for English, Finnish, Swedish, Latvian and Lithuanian. Clarity is a fully-fledged retrieval system that supports the user during the whole process of query formulation, text retrieval and document browsing. We address four of the major aspects of Clarity: (i) the user-driven methodology that formed the basis for the iterative design cycle and framework in the project, (ii) the system architecture that was developed to support the interaction and coordination of Clarity’s distributed services, (iii) the data resources and methods for query translation, and (iv) the support for Baltic languages. Clarity is an example of a distributed CLIR system built with minimal translation resources and, to our knowledge, the only such system that currently supports Baltic languages

    PLuTO: MT for online patent translation

    Get PDF
    PLuTO – Patent Language Translation Online – is a partially EU-funded commercialization project which specializes in the automatic retrieval and translation of patent documents. At the core of the PLuTO framework is a machine translation (MT) engine through which web-based translation services are offered. The fully integrated PLuTO architecture includes a translation engine coupling MT with translation memories (TM), and a patent search and retrieval engine. In this paper, we first describe the motivating factors behind the provision of such a service. Following this, we give an overview of the PLuTO framework as a whole, with particular emphasis on the MT components, and provide a real world use case scenario in which PLuTO MT services are exploited
    • 

    corecore