5 research outputs found

    Performance and Energy Optimization of the Iterative Solution of Sparse Linear Systems on Multicore Processors

    Get PDF
    En esta tesis doctoral se aborda la solución de sistemas dispersos de ecuaciones lineales utilizando métodos iterativos precondicionados basados en subespacios de Krylov. En concreto, se centra en ILUPACK, una biblioteca que implementa precondicionadores de tipo ILU multinivel para la solución eficiente de sistemas lineales dispersos. El incremento en el número de ecuaciones, y la aparición de nuevas arquitecturas, motiva el desarrollo de una versión paralela de ILUPACK que optimice tanto el tiempo de ejecución como el consumo energético en arquitecturas multinúcleo actuales y en clusters de nodos construidos con esta tecnología. El objetivo principal de la tesis es el diseño, implementación y valuación de resolutores paralelos energéticamente eficientes para sistemas lineales dispersos orientados a procesadores multinúcleo así como aceleradores hardware como el Intel Xeon Phi. Para lograr este objetivo, se aprovecha el paralelismo de tareas mediante OmpSs y MPI, y se desarrolla un entorno automático para detectar ineficiencias energéticas.In this dissertation we target the solution of large sparse systems of linear equations using preconditioned iterative methods based on Krylov subspaces. Specifically, we focus on ILUPACK, a library that offers multi-level ILU preconditioners for the effective solution of sparse linear systems. The increase of the number of equations and the introduction of new HPC architectures motivates us to develop a parallel version of ILUPACK which optimizes both execution time and energy consumption on current multicore architectures and clusters of nodes built from this type of technology. Thus, the main goal of this thesis is the design, implementation and evaluation of parallel and energy-efficient iterative sparse linear system solvers for multicore processors as well as recent manycore accelerators such as the Intel Xeon Phi. To fulfill the general objective, we optimize ILUPACK exploiting task parallelism via OmpSs and MPI, and also develope an automatic framework to detect energy inefficiencies

    Adaptation of MPDATA Heterogeneous Stencil Computation to Intel Xeon Phi Coprocessor

    No full text
    The multidimensional positive definite advection transport algorithm (MPDATA) belongs to the group of nonoscillatory forward-in-time algorithms and performs a sequence of stencil computations. MPDATA is one of the major parts of the dynamic core of the EULAG geophysical model. In this work, we outline an approach to adaptation of the 3D MPDATA algorithm to the Intel MIC architecture. In order to utilize available computing resources, we propose the (3 + 1)D decomposition of MPDATA heterogeneous stencil computations. This approach is based on combination of the loop tiling and fusion techniques. It allows us to ease memory/communication bounds and better exploit the theoretical floating point efficiency of target computing platforms. An important method of improving the efficiency of the (3 + 1)D decomposition is partitioning of available cores/threads into work teams. It permits for reducing inter-cache communication overheads. This method also increases opportunities for the efficient distribution of MPDATA computation onto available resources of the Intel MIC architecture, as well as Intel CPUs. We discuss preliminary performance results obtained on two hybrid platforms, containing two CPUs and Intel Xeon Phi. The top-of-the-line Intel Xeon Phi 7120P gives the best performance results, and executes MPDATA almost 2 times faster than two Intel Xeon E5-2697v2 CPUs
    corecore