367 research outputs found

    Efficient Algorithms for Image and High Dimensional Data Processing Using Eikonal Equation on Graphs

    Full text link
    International audienceIn this paper we propose an adaptation of the static eikonal equation over weighted graphs of arbitrary structure using a framework of discrete operators. Based on this formulation, we provide explicit solu- tions for the L1,L2 and L∞ norms. Efficient algorithms to compute the explicit solution of the eikonal equation on graphs are also described. We then present several applications of our methodology for image processing such as superpixels decomposition, region based segmentation or patch- based segmentation using non-local configurations. By working on graphs, our formulation provides an unified approach for the processing of any data that can be represented by a graph such as high-dimensional data

    Limits and consistency of non-local and graph approximations to the Eikonal equation

    Full text link
    In this paper, we study a non-local approximation of the time-dependent (local) Eikonal equation with Dirichlet-type boundary conditions, where the kernel in the non-local problem is properly scaled. Based on the theory of viscosity solutions, we prove existence and uniqueness of the viscosity solutions of both the local and non-local problems, as well as regularity properties of these solutions in time and space. We then derive error bounds between the solution to the non-local problem and that of the local one, both in continuous-time and Backward Euler time discretization. We then turn to studying continuum limits of non-local problems defined on random weighted graphs with nn vertices. In particular, we establish that if the kernel scale parameter decreases at an appropriate rate as nn grows, then almost surely, the solution of the problem on graphs converges uniformly to the viscosity solution of the local problem as the time step vanishes and the number vertices nn grows large

    Graph-based skin lesion segmentation of multispectral dermoscopic images

    No full text
    International audienceAccurate skin lesion segmentation is critical for automated early skin cancer detection and diagnosis. We present a novel method to detect skin lesion borders in multispectral der-moscopy images. First, hairs are detected on infrared images and removed by inpainting visible spectrum images. Second, skin lesion is pre-segmented using a clustering of a superpixel partition. Finally, the pre-segmentation is globally regular-ized at the superpixel level and locally regularized in a narrow band at the pixel level

    A PDE Approach to Data-driven Sub-Riemannian Geodesics in SE(2)

    Get PDF
    We present a new flexible wavefront propagation algorithm for the boundary value problem for sub-Riemannian (SR) geodesics in the roto-translation group SE(2)=R2S1SE(2) = \mathbb{R}^2 \rtimes S^1 with a metric tensor depending on a smooth external cost C:SE(2)[δ,1]\mathcal{C}:SE(2) \to [\delta,1], δ>0\delta>0, computed from image data. The method consists of a first step where a SR-distance map is computed as a viscosity solution of a Hamilton-Jacobi-Bellman (HJB) system derived via Pontryagin's Maximum Principle (PMP). Subsequent backward integration, again relying on PMP, gives the SR-geodesics. For C=1\mathcal{C}=1 we show that our method produces the global minimizers. Comparison with exact solutions shows a remarkable accuracy of the SR-spheres and the SR-geodesics. We present numerical computations of Maxwell points and cusp points, which we again verify for the uniform cost case C=1\mathcal{C}=1. Regarding image analysis applications, tracking of elongated structures in retinal and synthetic images show that our line tracking generically deals with crossings. We show the benefits of including the sub-Riemannian geometry.Comment: Extended version of SSVM 2015 conference article "Data-driven Sub-Riemannian Geodesics in SE(2)

    A Semi-Lagrangian scheme for a modified version of the Hughes model for pedestrian flow

    Get PDF
    In this paper we present a Semi-Lagrangian scheme for a regularized version of the Hughes model for pedestrian flow. Hughes originally proposed a coupled nonlinear PDE system describing the evolution of a large pedestrian group trying to exit a domain as fast as possible. The original model corresponds to a system of a conservation law for the pedestrian density and an Eikonal equation to determine the weighted distance to the exit. We consider this model in presence of small diffusion and discuss the numerical analysis of the proposed Semi-Lagrangian scheme. Furthermore we illustrate the effect of small diffusion on the exit time with various numerical experiments

    PDEs level sets on weighted graphs

    Full text link
    International audienceIn this paper we propose an adaptation of PDEs level sets over weighted graphs of arbitrary structure, based on PdEs and using a framework of discrete operators. A general PDEs level sets formulation is presented and an algorithm to solve such equation is described. Some transcriptions of well-known models under this formalism, as the mean-curvature-motion or active contours, are also provided. Then, we present several applications of our formalism, including image segmentation with active contours, using weighted graphs of arbitrary topologies

    Geodesic Models with Convexity Shape Prior

    Full text link
    The minimal geodesic models based on the Eikonal equations are capable of finding suitable solutions in various image segmentation scenarios. Existing geodesic-based segmentation approaches usually exploit image features in conjunction with geometric regularization terms, such as Euclidean curve length or curvature-penalized length, for computing geodesic curves. In this paper, we take into account a more complicated problem: finding curvature-penalized geodesic paths with a convexity shape prior. We establish new geodesic models relying on the strategy of orientation-lifting, by which a planar curve can be mapped to an high-dimensional orientation-dependent space. The convexity shape prior serves as a constraint for the construction of local geodesic metrics encoding a particular curvature constraint. Then the geodesic distances and the corresponding closed geodesic paths in the orientation-lifted space can be efficiently computed through state-of-the-art Hamiltonian fast marching method. In addition, we apply the proposed geodesic models to the active contours, leading to efficient interactive image segmentation algorithms that preserve the advantages of convexity shape prior and curvature penalization.Comment: This paper has been accepted by TPAM
    corecore