1,122 research outputs found

    Two-Swim Operators in the Modified Bacterial Foraging Algorithm for the Optimal Synthesis of Four-Bar Mechanisms

    Get PDF
    This paper presents two-swim operators to be added to the chemotaxis process of the modified bacterial foraging optimization algorithm to solve three instances of the synthesis of four-bar planar mechanisms. One swim favors exploration while the second one promotes fine movements in the neighborhood of each bacterium. The combined effect of the new operators looks to increase the production of better solutions during the search. As a consequence, the ability of the algorithm to escape from local optimum solutions is enhanced. The algorithm is tested through four experiments and its results are compared against two BFOA-based algorithms and also against a differential evolution algorithm designed for mechanical design problems. The overall results indicate that the proposed algorithm outperforms other BFOA-based approaches and finds highly competitive mechanisms, with a single set of parameter values and with less evaluations in the first synthesis problem, with respect to those mechanisms obtained by the differential evolution algorithm, which needed a parameter fine-tuning process for each optimization problem

    QUORUM SENSING BASED BACTERIAL SWARM OPTIMIZATION ON TEST BENCHMARK FUNCTIONS

    Get PDF
    The Bacterial swarm optimization is one of the latest optimization technique mainly inspired from the swarm of bacteria. This paper introduces an intelligent Quorum sensing based Bacterial Swarm Optimization (QBSO) technique for testing and validation. The quorum sensing senses the best position of the bacteria by knowing the worst place in search space. By knowing these positions, the best optimal solution is attained. Here in this proposed QBSO algorithm the exploration capability of the bacteria is well improved. The proposed technique is validated on the seven standard benchmark with unimodal and multimodal test function for its feasibility and optimality. The basic swarm based optimization algorithms such as Particle Swarm Optimization, Ant Colony Optimization, Biogeography Based Optimization, Simulated Bee Colony and conventional Bacterial Swarm Optimization with the standard parameters are simulated and associated with the proposed technique. The attained results evidently indicate that the proposed method outperforms from the considered optimization methods. Further, the proposed technique may apply to any engineering problems, especially for complex real time optimization problems

    Optimal Tuning of PD controllers using Modified Artificial Bee Colony Algorithm

    Get PDF
    This paper presents an investigation of PD controller tuning using a modified artificial bee colony algorithm (MABC). The main purpose of this work is to apply and investigates the performance of MABC in tuning the PD controller of single link manipulator system (SLMS) in comparison with the original ABC. The objective of the MABC algorithm is to minimize the error by using mean square error (MSE) as an objective function. The proposed algorithm has also been tested in three benchmark functions with different dimensions to checked the robustness of the algorithm in different problems surface. The result shows that the MABC able to tune the controller to their best optimum value

    Bioinspired Computing: Swarm Intelligence

    Get PDF

    Introductory Chapter: Swarm Intelligence and Particle Swarm Optimization

    Get PDF

    Economic Load Dispatch Using Bacterial Foraging Technique with Particle Swarm Optimization Biased Evolution

    Get PDF
    This paper presents a novel modified bacterial foraging technique (BFT) to solve economic load dispatch (ELD) problems. BFT is already used for optimization problems, and performance of basic BFT for small problems with moderate dimension and searching space is satisfactory. Search space and complexity grow exponentially in scalable ELD problems, and the basic BFT is not suitable to solve the high dimensional ELD problems, as cells move randomly in basic BFT, and swarming is not sufficiently achieved by cell-to-cell attraction and repelling effects for ELD. However, chemotaxis, swimming, reproduction and elimination-dispersal steps of BFT are very promising. On the other hand, particles move toward promising locations depending on best values from memory and knowledge in particle swarm optimization (PSO). Therefore, best cell (or particle) biased velocity (vector) is added to the random velocity of BFT to reduce randomness in movement (evolution) and to increase swarming in the proposed method to solve ELD. Finally, a data set from a benchmark system is used to show the effectiveness of the proposed method and the results are compared with other methods

    A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments

    Get PDF
    In recent years, due to the unnecessary wastage of electrical energy in residential buildings, the requirement of energy optimization and user comfort has gained vital importance. In the literature, various techniques have been proposed addressing the energy optimization problem. The goal of each technique was to maintain a balance between user comfort and energy requirements such that the user can achieve the desired comfort level with the minimum amount of energy consumption. Researchers have addressed the issue with the help of different optimization algorithms and variations in the parameters to reduce energy consumption. To the best of our knowledge, this problem is not solved yet due to its challenging nature. The gap in the literature is due to the advancements in the technology and drawbacks of the optimization algorithms and the introduction of different new optimization algorithms. Further, many newly proposed optimization algorithms which have produced better accuracy on the benchmark instances but have not been applied yet for the optimization of energy consumption in smart homes. In this paper, we have carried out a detailed literature review of the techniques used for the optimization of energy consumption and scheduling in smart homes. The detailed discussion has been carried out on different factors contributing towards thermal comfort, visual comfort, and air quality comfort. We have also reviewed the fog and edge computing techniques used in smart homes

    Reactive scheduling to treat disruptive events in the MRCPSP

    Get PDF
    Esta tesis se centra en diseñar y desarrollar una metodología para abordar el MRCPSP con diversas funciones objetivo y diferentes tipos de interrupciones. En esta tesis se exploran el MRCPSP con dos funciones objetivo, a saber: (1) minimizar la duración del proyecto y (2) maximizar el valor presente neto del proyecto. Luego, se tiene en cuenta dos tipos diferentes de interrupciones, (a) interrupción de duración, e (b) interrupción de recurso renovable. Para resolver el MRCPSP, en esta tesis se proponen tres estrategias metaheurísticas: (1) algoritmo memético para minimizar la duración del proyecto, (2) algoritmo adaptativo de forrajeo bacteriano para maximizar el valor presente neto del proyecto y (3) algoritmo de optimización multiobjetivo de forrajeo bacteriano (MBFO) para resolver el MRCPSP con eventos de interrupción. Para juzgar el rendimiento del algoritmo memético y de forrajeo bacteriano propuestos, se ha llevado a cabo un extenso análisis basado en diseño factorial y diseño Taguchi para controlar y optimizar los parámetros del algoritmo. Además se han puesto a prueba resolviendo las instancias de los conjuntos más importantes en la literatura: PSPLIB (10,12,14,16,18,20 y 30 actividades) y MMLIB (50 y 100 actividades). También se ha demostrado la superioridad de los algoritmos metaheurísticos propuestos sobre otros enfoques heurísticos y metaheurísticos del estado del arte. A partir de los estudios experimentales se ha ajustado la MBFO, utilizando un caso de estudio.DoctoradoDoctor en Ingeniería Industria
    corecore