84,205 research outputs found

    Evolutionary Psychology

    Get PDF

    The effect of metapopulation processes on the spatial scale of adaptation across an environmental gradient

    Get PDF
    We show that the butterfly Aricia agestis (Lycaenidae) is adapted to its thermal environment in via integer changes in the numbers of generations per year (voltinism): it has two generations per year in warm habitats and one generation per year in cool habitats in north Wales (UK). Voltinism is an “adaptive peak” since individuals having an intermediate number of generations per year would fail to survive the winter, and indeed no populations showed both voltinism types in nature. In spite of this general pattern, 11% of populations apparently possess the “wrong” voltinism for their local environment, and population densities were lower in thermally intermediate habitat patches. Population dynamic data and patterns of genetic differentiation suggest that adaptation occurs at the metapopulation level, with local populations possessing the voltinism type appropriate for the commonest habitat type within each population network. When populations and groups of populations go extinct, they tend to be replaced by colonists from the commonest thermal environment nearby, even if this is the locally incorrect adaptation. Our results illustrate how stochastic population turnover can impose a limit on local adaptation over distances many times larger than predicted on the basis of normal dispersal movements

    Open Programming Language Interpreters

    Get PDF
    Context: This paper presents the concept of open programming language interpreters and the implementation of a framework-level metaobject protocol (MOP) to support them. Inquiry: We address the problem of dynamic interpreter adaptation to tailor the interpreter's behavior on the task to be solved and to introduce new features to fulfill unforeseen requirements. Many languages provide a MOP that to some degree supports reflection. However, MOPs are typically language-specific, their reflective functionality is often restricted, and the adaptation and application logic are often mixed which hardens the understanding and maintenance of the source code. Our system overcomes these limitations. Approach: We designed and implemented a system to support open programming language interpreters. The prototype implementation is integrated in the Neverlang framework. The system exposes the structure, behavior and the runtime state of any Neverlang-based interpreter with the ability to modify it. Knowledge: Our system provides a complete control over interpreter's structure, behavior and its runtime state. The approach is applicable to every Neverlang-based interpreter. Adaptation code can potentially be reused across different language implementations. Grounding: Having a prototype implementation we focused on feasibility evaluation. The paper shows that our approach well addresses problems commonly found in the research literature. We have a demonstrative video and examples that illustrate our approach on dynamic software adaptation, aspect-oriented programming, debugging and context-aware interpreters. Importance: To our knowledge, our paper presents the first reflective approach targeting a general framework for language development. Our system provides full reflective support for free to any Neverlang-based interpreter. We are not aware of any prior application of open implementations to programming language interpreters in the sense defined in this paper. Rather than substituting other approaches, we believe our system can be used as a complementary technique in situations where other approaches present serious limitations

    An active-architecture approach to COTS integration

    Get PDF
    Commercial off-the-shelf (COTS) software products are increasingly used as standard components within integrated information systems. This creates challenges since both their developers and source code are not usually available, and the ongoing development of COTS cannot be predicted. The ArchWare Framework approach recognises COTS products as part of the ambient environment of an information system and therefore an important part of development is incorporating COTS as effective system components. This integration of COTS components, and the composition of components, is captured by an active architecture model which changes as the system evolves. Indeed the architecture modelling language used enables it to express the monitoring and evolution of a system. This active architecture model is structured using control system principles. By modelling both integration and evolution it can guide the system’s response to both predicted and emergent changes that arise from the use of COTS products.Publisher PDFPeer reviewe

    Fine Grained Component Engineering of Adaptive Overlays: Experiences and Perspectives

    Get PDF
    Recent years have seen significant research being carried out into peer-to-peer (P2P) systems. This work has focused on the styles and applications of P2P computing, from grid computation to content distribution; however, little investigation has been performed into how these systems are built. Component based engineering is an approach that has seen successful deployment in the field of middleware development; functionality is encapsulated in ‘building blocks’ that can be dynamically plugged together to form complete systems. This allows efficient, flexible and adaptable systems to be built with lower overhead and development complexity. This paper presents an investigation into the potential of using component based engineering in the design and construction of peer-to-peer overlays. It is highlighted that the quality of these properties is dictated by the component architecture used to implement the system. Three reusable decomposition architectures are designed and evaluated using Chord and Pastry case studies. These demonstrate that significant improvements can be made over traditional design approaches resulting in much more reusable, (re)configurable and extensible systems

    A Model of Emotion as Patterned Metacontrol

    Get PDF
    Adaptive systems use feedback as a key strategy to cope with uncertainty and change in their environments. The information fed back from the sensorimotor loop into the control architecture can be used to change different elements of the controller at four different levels: parameters of the control model, the control model itself, the functional organization of the agent and the functional components of the agent. The complexity of such a space of potential conïŹgurations is daunting. The only viable alternative for the agent ?in practical, economical, evolutionary terms? is the reduction of the dimensionality of the conïŹguration space. This reduction is achieved both by functionalisation —or, to be more precise, by interface minimization— and by patterning, i.e. the selection among a predeïŹned set of organisational conïŹgurations. This last analysis let us state the central problem of how autonomy emerges from the integration of the cognitive, emotional and autonomic systems in strict functional terms: autonomy is achieved by the closure of functional dependency. In this paper we will show a general model of how the emotional biological systems operate following this theoretical analysis and how this model is also of applicability to a wide spectrum of artiïŹcial systems
    • 

    corecore