639 research outputs found

    Personalized Acoustic Modeling by Weakly Supervised Multi-Task Deep Learning using Acoustic Tokens Discovered from Unlabeled Data

    Full text link
    It is well known that recognizers personalized to each user are much more effective than user-independent recognizers. With the popularity of smartphones today, although it is not difficult to collect a large set of audio data for each user, it is difficult to transcribe it. However, it is now possible to automatically discover acoustic tokens from unlabeled personal data in an unsupervised way. We therefore propose a multi-task deep learning framework called a phoneme-token deep neural network (PTDNN), jointly trained from unsupervised acoustic tokens discovered from unlabeled data and very limited transcribed data for personalized acoustic modeling. We term this scenario "weakly supervised". The underlying intuition is that the high degree of similarity between the HMM states of acoustic token models and phoneme models may help them learn from each other in this multi-task learning framework. Initial experiments performed over a personalized audio data set recorded from Facebook posts demonstrated that very good improvements can be achieved in both frame accuracy and word accuracy over popularly-considered baselines such as fDLR, speaker code and lightly supervised adaptation. This approach complements existing speaker adaptation approaches and can be used jointly with such techniques to yield improved results.Comment: 5 pages, 5 figures, published in IEEE ICASSP 201

    Automatic Speech Recognition Using LP-DCTC/DCS Analysis Followed by Morphological Filtering

    Get PDF
    Front-end feature extraction techniques have long been a critical component in Automatic Speech Recognition (ASR). Nonlinear filtering techniques are becoming increasingly important in this application, and are often better than linear filters at removing noise without distorting speech features. However, design and analysis of nonlinear filters are more difficult than for linear filters. Mathematical morphology, which creates filters based on shape and size characteristics, is a design structure for nonlinear filters. These filters are limited to minimum and maximum operations that introduce a deterministic bias into filtered signals. This work develops filtering structures based on a mathematical morphology that utilizes the bias while emphasizing spectral peaks. The combination of peak emphasis via LP analysis with morphological filtering results in more noise robust speech recognition rates. To help understand the behavior of these pre-processing techniques the deterministic and statistical properties of the morphological filters are compared to the properties of feature extraction techniques that do not employ such algorithms. The robust behavior of these algorithms for automatic speech recognition in the presence of rapidly fluctuating speech signals with additive and convolutional noise is illustrated. Examples of these nonlinear feature extraction techniques are given using the Aurora 2.0 and Aurora 3.0 databases. Features are computed using LP analysis alone to emphasize peaks, morphological filtering alone, or a combination of the two approaches. Although absolute best results are normally obtained using a combination of the two methods, morphological filtering alone is nearly as effective and much more computationally efficient

    Whole Word Phonetic Displays for Speech Articulation Training

    Get PDF
    The main objective of this dissertation is to investigate and develop speech recognition technologies for speech training for people with hearing impairments. During the course of this work, a computer aided speech training system for articulation speech training was also designed and implemented. The speech training system places emphasis on displays to improve children\u27s pronunciation of isolated Consonant-Vowel-Consonant (CVC) words, with displays at both the phonetic level and whole word level. This dissertation presents two hybrid methods for combining Hidden Markov Models (HMMs) and Neural Networks (NNs) for speech recognition. The first method uses NN outputs as posterior probability estimators for HMMs. The second method uses NNs to transform the original speech features to normalized features with reduced correlation. Based on experimental testing, both of the hybrid methods give higher accuracy than standard HMM methods. The second method, using the NN to create normalized features, outperforms the first method in terms of accuracy. Several graphical displays were developed to provide real time visual feedback to users, to help them to improve and correct their pronunciations

    Studies on noise robust automatic speech recognition

    Get PDF
    Noise in everyday acoustic environments such as cars, traffic environments, and cafeterias remains one of the main challenges in automatic speech recognition (ASR). As a research theme, it has received wide attention in conferences and scientific journals focused on speech technology. This article collection reviews both the classic and novel approaches suggested for noise robust ASR. The articles are literature reviews written for the spring 2009 seminar course on noise robust automatic speech recognition (course code T-61.6060) held at TKK

    Speaker Clustering for Multilingual Synthesis

    Get PDF

    A speech recognition model based on tri-phones for the Arabic language

    Get PDF
    One way to keep up a decent recognition of results- with increasing vocabulary- is the use of base units rather than words. This paper presents a Continuous Speech Large Vocabulary Recognition System-for Arabic, which is based on tri-phones. In order to train and test the system, a dictionary and a 39-dimensional Mel Frequency Cepstrum Coefficient (MFCC) feature vector was computed. The computations involve: Hamming Window, Fourier Transformation, Average Spectral Value (ASV), Logarithm of ASV, Normalized Energy, as well as, the first and second order time derivatives of 13-coefficients. A combination of a Hidden Markov Model and a Neural Network Approach was used in order to model the basic temporal nature of the speech signal. The results obtained by testing the recognizer system with 7841 tri-phones. 13-coefficients indicate accuracy level of 58%. 39-coeefficents indicates 62%. With Cepstrum Mean Normalization, there is an indication of 71%. With these small available data-only 620 sentences-these results are very encouraging
    • …
    corecore