1,908 research outputs found

    Security and Privacy Issues of Big Data

    Get PDF
    This chapter revises the most important aspects in how computing infrastructures should be configured and intelligently managed to fulfill the most notably security aspects required by Big Data applications. One of them is privacy. It is a pertinent aspect to be addressed because users share more and more personal data and content through their devices and computers to social networks and public clouds. So, a secure framework to social networks is a very hot topic research. This last topic is addressed in one of the two sections of the current chapter with case studies. In addition, the traditional mechanisms to support security such as firewalls and demilitarized zones are not suitable to be applied in computing systems to support Big Data. SDN is an emergent management solution that could become a convenient mechanism to implement security in Big Data systems, as we show through a second case study at the end of the chapter. This also discusses current relevant work and identifies open issues.Comment: In book Handbook of Research on Trends and Future Directions in Big Data and Web Intelligence, IGI Global, 201

    Techniques to Detect DoS and DDoS Attacks and an Introduction of a Mobile Agent System to Enhance it in Cloud Computing

    Get PDF
    Security in cloud computing is the ultimate question that every potential user studies before adopting it. Among the important points that the provider must ensure is that the Cloud will be available anytime the consumer tries to access it. Generally, the Cloud is accessible via the Internet, what makes it subject to a large variety of attacks. Today, the most striking cyber-attacks are the flooding DoS and its variant DDoS. This type of attacks aims to break down the availability of a service to its legitimate clients. In this paper, we underline the most used techniques to stand up against DoS flooading attacks in the Cloud

    A critical review of cyber-physical security for building automation systems

    Full text link
    Modern Building Automation Systems (BASs), as the brain that enables the smartness of a smart building, often require increased connectivity both among system components as well as with outside entities, such as optimized automation via outsourced cloud analytics and increased building-grid integrations. However, increased connectivity and accessibility come with increased cyber security threats. BASs were historically developed as closed environments with limited cyber-security considerations. As a result, BASs in many buildings are vulnerable to cyber-attacks that may cause adverse consequences, such as occupant discomfort, excessive energy usage, and unexpected equipment downtime. Therefore, there is a strong need to advance the state-of-the-art in cyber-physical security for BASs and provide practical solutions for attack mitigation in buildings. However, an inclusive and systematic review of BAS vulnerabilities, potential cyber-attacks with impact assessment, detection & defense approaches, and cyber-secure resilient control strategies is currently lacking in the literature. This review paper fills the gap by providing a comprehensive up-to-date review of cyber-physical security for BASs at three levels in commercial buildings: management level, automation level, and field level. The general BASs vulnerabilities and protocol-specific vulnerabilities for the four dominant BAS protocols are reviewed, followed by a discussion on four attack targets and seven potential attack scenarios. The impact of cyber-attacks on BASs is summarized as signal corruption, signal delaying, and signal blocking. The typical cyber-attack detection and defense approaches are identified at the three levels. Cyber-secure resilient control strategies for BASs under attack are categorized into passive and active resilient control schemes. Open challenges and future opportunities are finally discussed.Comment: 38 pages, 7 figures, 6 tables, submitted to Annual Reviews in Contro

    General Terms

    Get PDF
    In this paper, we describe the prevention-focused and adaptive middleware mechanisms implemented as part of the Advanced Adaptive Applications (A3) Environment that we are developing as a near-application and application-focused cyber-defense technology under the DARPA Clean-slate design of Resilient, Adaptive, Secure Hosts (CRASH) program

    Extended Fault Taxonomy of SOA-Based Systems

    Get PDF
    Service Oriented Architecture (SOA) is considered as a standard for enterprise software development. The main characteristics of SOA are dynamic discovery and composition of software services in a heterogeneous environment. These properties pose newer challenges in fault management of SOA-based systems (SBS). A proper understanding of different faults in an SBS is very necessary for effective fault handling. A comprehensive three-fold fault taxonomy is presented here that covers distributed, SOA specific and non-functional faults in a holistic manner. A comprehensive fault taxonomy is a key starting point for providing techniques and methods for accessing the quality of a given system. In this paper, an attempt has been made to outline several SBSs faults into a well-structured taxonomy that may assist developers to plan suitable fault repairing strategies. Some commonly emphasized fault recovery strategies are also discussed. Some challenges that may occur during fault handling of SBSs are also mentioned

    Resilient and Trustworthy Dynamic Data-driven Application Systems (DDDAS) Services for Crisis Management Environments

    Get PDF
    Future crisis management systems needresilient and trustworthy infrastructures to quickly develop reliable applications and processes, andensure end-to-end security, trust, and privacy. Due to the multiplicity and diversity of involved actors, volumes of data, and heterogeneity of shared information;crisis management systems tend to be highly vulnerable and subjectto unforeseen incidents. As a result, the dependability of crisis management systems can be at risk. This paper presents a cloud-based resilient and trustworthy infrastructure (known as rDaaS) to quickly develop secure crisis management systems. The rDaaS integrates the Dynamic Data-Driven Application Systems (DDDAS) paradigm into a service-oriented architecture over cloud technology and provides a set of resilient DDDAS-As-A Service (rDaaS) components to build secure and trusted adaptable crisis processes. The rDaaS also ensures resilience and security by obfuscating the execution environment and applying Behavior Software Encryption and Moving Technique Defense. A simulation environment for a nuclear plant crisis management case study is illustrated to build resilient and trusted crisis response processes
    corecore