236 research outputs found

    Resilient networking in wireless sensor networks

    Get PDF
    This report deals with security in wireless sensor networks (WSNs), especially in network layer. Multiple secure routing protocols have been proposed in the literature. However, they often use the cryptography to secure routing functionalities. The cryptography alone is not enough to defend against multiple attacks due to the node compromise. Therefore, we need more algorithmic solutions. In this report, we focus on the behavior of routing protocols to determine which properties make them more resilient to attacks. Our aim is to find some answers to the following questions. Are there any existing protocols, not designed initially for security, but which already contain some inherently resilient properties against attacks under which some portion of the network nodes is compromised? If yes, which specific behaviors are making these protocols more resilient? We propose in this report an overview of security strategies for WSNs in general, including existing attacks and defensive measures. In this report we focus at the network layer in particular, and an analysis of the behavior of four particular routing protocols is provided to determine their inherent resiliency to insider attacks. The protocols considered are: Dynamic Source Routing (DSR), Gradient-Based Routing (GBR), Greedy Forwarding (GF) and Random Walk Routing (RWR)

    Nature-inspired survivability: Prey-inspired survivability countermeasures for cloud computing security challenges

    Get PDF
    As cloud computing environments become complex, adversaries have become highly sophisticated and unpredictable. Moreover, they can easily increase attack power and persist longer before detection. Uncertain malicious actions, latent risks, Unobserved or Unobservable risks (UUURs) characterise this new threat domain. This thesis proposes prey-inspired survivability to address unpredictable security challenges borne out of UUURs. While survivability is a well-addressed phenomenon in non-extinct prey animals, applying prey survivability to cloud computing directly is challenging due to contradicting end goals. How to manage evolving survivability goals and requirements under contradicting environmental conditions adds to the challenges. To address these challenges, this thesis proposes a holistic taxonomy which integrate multiple and disparate perspectives of cloud security challenges. In addition, it proposes the TRIZ (Teorija Rezbenija Izobretatelskib Zadach) to derive prey-inspired solutions through resolving contradiction. First, it develops a 3-step process to facilitate interdomain transfer of concepts from nature to cloud. Moreover, TRIZ’s generic approach suggests specific solutions for cloud computing survivability. Then, the thesis presents the conceptual prey-inspired cloud computing survivability framework (Pi-CCSF), built upon TRIZ derived solutions. The framework run-time is pushed to the user-space to support evolving survivability design goals. Furthermore, a target-based decision-making technique (TBDM) is proposed to manage survivability decisions. To evaluate the prey-inspired survivability concept, Pi-CCSF simulator is developed and implemented. Evaluation results shows that escalating survivability actions improve the vitality of vulnerable and compromised virtual machines (VMs) by 5% and dramatically improve their overall survivability. Hypothesis testing conclusively supports the hypothesis that the escalation mechanisms can be applied to enhance the survivability of cloud computing systems. Numeric analysis of TBDM shows that by considering survivability preferences and attitudes (these directly impacts survivability actions), the TBDM method brings unpredictable survivability information closer to decision processes. This enables efficient execution of variable escalating survivability actions, which enables the Pi-CCSF’s decision system (DS) to focus upon decisions that achieve survivability outcomes under unpredictability imposed by UUUR

    Intrusion Tolerance: Concepts and Design Principles. A Tutorial

    Get PDF
    In traditional dependability, fault tolerance has been the workhorse of the many solutions published over the years. Classical security-related work has on the other hand privileged, with few exceptions, intrusion prevention, or intrusion detection without systematic forms of processing the intrusion symptoms. A new approach has slowly emerged during the past decade, and gained impressive momentum recently: intrusion tolerance. The purpose of this tutorial is to explain the underlying concepts and design principles. The tutorial reviews previous results under the light of intrusion tolerance (IT), introduces the fundamental ideas behind IT, and presents recent advances of the state-of-the-art, coming from European and US research efforts devoted to IT. The program of the tutorial will address: a review of the dependability and security background; introduction of the fundamental concepts of intrusion tolerance (IT); intrusion-aware fault models; intrusion prevention; intrusion detection; IT strategies and mechanisms; design methodologies for IT systems; examples of IT systems and protocol

    A holistic approach for measuring the survivability of SCADA systems

    Get PDF
    Supervisory Control and Data Acquisition (SCADA) systems are responsible for controlling and monitoring Industrial Control Systems (ICS) and Critical Infrastructure Systems (CIS) among others. Such systems are responsible to provide services our society relies on such as gas, electricity, and water distribution. They process our waste; manage our railways and our traffic. Nevertheless to say, they are vital for our society and any disruptions on such systems may produce from financial disasters to ultimately loss of lives. SCADA systems have evolved over the years, from standalone, proprietary solutions and closed networks into large-scale, highly distributed software systems operating over open networks such as the internet. In addition, the hardware and software utilised by SCADA systems is now, in most cases, based on COTS (Commercial Off-The-Shelf) solutions. As they evolved they became vulnerable to malicious attacks. Over the last few years there is a push from the computer security industry on adapting their security tools and techniques to address the security issues of SCADA systems. Such move is welcome however is not sufficient, otherwise successful malicious attacks on computer systems would be non-existent. We strongly believe that rather than trying to stop and detect every attack on SCADA systems it is imperative to focus on providing critical services in the presence of malicious attacks. Such motivation is similar with the concepts of survivability, a discipline integrates areas of computer science such as performance, security, fault-tolerance and reliability. In this thesis we present a new concept of survivability; Holistic survivability is an analysis framework suitable for a new era of data-driven networked systems. It extends the current view of survivability by incorporating service interdependencies as a key property and aspects of machine learning. The framework uses the formalism of probabilistic graphical models to quantify survivability and introduces new metrics and heuristics to learn and identify essential services automatically. Current definitions of survivability are often limited since they either apply performance as measurement metric or use security metrics without any survivability context. Holistic survivability addresses such issues by providing a flexible framework where performance and security metrics can be tailored to the context of survivability. In other words, by applying performance and security our work aims to support key survivability properties such as recognition and resistance. The models and metrics here introduced are applied to SCADA systems as such systems insecurity is one of the motivations of this work. We believe that the proposed work goes beyond the current status of survivability models. Holistic survivability is flexible enough to support the addition of other metrics and can be easily used with different models. Because it is based on a well-known formalism its definition and implementation are easy to grasp and to apply. Perhaps more importantly, this proposed work is aimed to a new era where data is being produced and consumed on a large-scale. Holistic survivability aims to be the catalyst to new models based on data that will provide better and more accurate insights on the survivability of systems

    Security challenges of Internet of Underwater Things : a systematic literature review

    Get PDF
    Water covers approximately 71% of the earth surface, yet much of the underwater world remains unexplored due to technology limitations. Internet of Underwater Things (IoUT) is a network of underwater objects that enables monitoring subsea environment remotely. Underwater Wireless Sensor Network (UWSN) is the main enabling technology for IoUT. UWSNs are characterised by the limitations of the underlying acoustic communication medium, high energy consumption, lack of hardware resources to implement computationally intensive tasks and dynamic network topology due to node mobility. These characteristics render UNWSNs vulnerable to different attacks, such as Wormhole, Sybil, flooding, jamming, spoofing and Denial of Service (DoS) attacks. This article reviews peer-reviewed literature that addresses the security challenges and attacks on UWSNs as well as possible mitigative solutions. Findings show that the biggest contributing factors to security threats in UWSNs are the limited energy supply, the limited communication medium and the harsh underwater communication conditions. Researchers in this field agree that the security measures of terrestrial wireless sensor networks are not directly applicable to UWSNs due to the unique nature of the underwater environment where resource management becomes a significant challenge. This article also outlines future research directions on security and privacy challenges of IoUT and UWSN

    Automated adaptive intrusion containment in systems of interacting services

    Get PDF
    Abstract Large scale distributed systems typically have interactions among different services that create an avenue for propagation of a failure from one service to another. The failures being considered may be the result of natural failures or malicious activity, collectively called disruptions. To make these systems tolerant to failures it is necessary to contain the spread of the occurrence automatically once it is detected. The objective is to allow certain parts of the system to continue to provide partial functionality in the system in the face of failures. Real world situations impose several constraints on the design of such a disruption tolerant system of which we consider the following -the alarms may have type I or type II errors; it may not be possible to change the service itself even though the interaction may be changed; attacks may use steps that are not anticipated a priori; and there may be bursts of concurrent alarms. We present the design and implementation of a system named ADEPTS as the realization of such a disruption tolerant system. ADEPTS uses a directed graph representation to model the spread of the failure through the system, presents algorithms for determining appropriate responses and monitoring their effectiveness, and quantifies the effect of disruptions through a high level survivability metric. ADEPTS is demonstrated on a real e-commerce testbed with actual attack patterns injected into it

    Secure State Estimation and Attack Reconstruction in Cyber-Physical Systems: Sliding Mode Observer Approach

    Get PDF
    A cyber-physical system (CPS) is a tight coupling of computational resources, network communication, and physical processes. They are composed of a set of networked components, including sensors, actuators, control processing units, and communication agents that instrument the physical world to make “smarter.” However, cyber components are also the source of new, unprecedented vulnerabilities to malicious attacks. In order to protect a CPS from attacks, three security levels of protection, detection, and identification are considered. In this chapter, we will discuss the identification level, i.e., secure state estimation and attack reconstruction of CPS with corrupted states and measurements. Considering different attack plans that may assault the states, sensors, or both of them, different online attack reconstruction approaches are discussed. Fixed-gain and adaptive-gain finite-time convergent observation algorithms, specifically sliding mode observers, are applied to online reconstruction of sensor and state attacks. Next, the corrupted measurements and states are to be cleaned up online in order to stop the attack propagation to the CPS via the control signal. The proposed methodologies are applied to an electric power network, whose states and sensors are under attack. Simulation results illustrate the efficacy of the proposed observers

    Detection and compensation of covert service-degrading intrusions in cyber physical systems through intelligent adaptive control

    Get PDF
    Cyber-Physical Systems (CPS) are playing important roles in the critical infrastructure now. A prominent family of CPSs are networked control systems in which the control and feedback signals are carried over computer networks like the Internet. Communication over insecure networks make system vulnerable to cyber attacks. In this article, we design an intrusion detection and compensation framework based on system/plant identification to fight covert attacks. We collect error statistics of the output estimation during the learning phase of system operation and after that, monitor the system behavior to see if it significantly deviates from the expected outputs. A compensating controller is further designed to intervene and replace the classic controller once the attack is detected. The proposed model is tested on a DC motor as the plant and is put against a deception signal amplification attack over the forward link. Simulation results show that the detection algorithm well detects the intrusion and the compensator is also successful in alleviating the attack effects
    • …
    corecore