1,756 research outputs found

    A Practical and Configurable Lip Sync Method for Games

    Full text link

    Video-Based Character Animation

    Full text link

    Towards Practical Capture of High-Fidelity Relightable Avatars

    Full text link
    In this paper, we propose a novel framework, Tracking-free Relightable Avatar (TRAvatar), for capturing and reconstructing high-fidelity 3D avatars. Compared to previous methods, TRAvatar works in a more practical and efficient setting. Specifically, TRAvatar is trained with dynamic image sequences captured in a Light Stage under varying lighting conditions, enabling realistic relighting and real-time animation for avatars in diverse scenes. Additionally, TRAvatar allows for tracking-free avatar capture and obviates the need for accurate surface tracking under varying illumination conditions. Our contributions are two-fold: First, we propose a novel network architecture that explicitly builds on and ensures the satisfaction of the linear nature of lighting. Trained on simple group light captures, TRAvatar can predict the appearance in real-time with a single forward pass, achieving high-quality relighting effects under illuminations of arbitrary environment maps. Second, we jointly optimize the facial geometry and relightable appearance from scratch based on image sequences, where the tracking is implicitly learned. This tracking-free approach brings robustness for establishing temporal correspondences between frames under different lighting conditions. Extensive qualitative and quantitative experiments demonstrate that our framework achieves superior performance for photorealistic avatar animation and relighting.Comment: Accepted to SIGGRAPH Asia 2023 (Conference); Project page: https://travatar-paper.github.io

    Lessons from digital puppetry - Updating a design framework for a perceptual user interface

    Get PDF
    While digital puppeteering is largely used just to augment full body motion capture in digital production, its technology and traditional concepts could inform a more naturalized multi-modal human computer interaction than is currently used with the new perceptual systems such as Kinect. Emerging immersive social media networks with their fully live virtual or augmented environments and largely inexperienced users would benefit the most from this strategy. This paper intends to define digital puppeteering as it is currently understood, and summarize its broad shortcomings based on expert evaluation. Based on this evaluation it will suggest updates and experiments using current perceptual technology and concepts in cognitive processing for existing human computer interaction taxonomy. This updated framework may be more intuitive and suitable in developing extensions to an emerging perceptual user interface for the general public

    Animation of generic 3D Head models driven by speech

    Get PDF
    International audienceIn this paper, a system for speech-driven animation of generic 3D head models is presented. The system is based on the inversion of a joint Audio-Visual Hidden Markov Model to estimate the visual information from speech data. Estimated visual speech features are used to animate a simple face model. The animation of a more complex head model is then obtained by automatically mapping the deformation of the simple model to it. The proposed algorithm allows the animation of 3D head models of arbitrary complexity through a simple setup procedure. The resulting animation is evaluated in terms of intelligibility of visual speech through subjective tests, showing a promising performance

    FACSGen 2.0 animation software: Generating 3D FACS-valid facial expressions for emotion research

    Get PDF
    In this article, we present FACSGen 2.0, new animation software for creating static and dynamic three-dimensional facial expressions on the basis of the Facial Action Coding System (FACS). FACSGen permits total control over the action units (AUs), which can be animated at all levels of intensity and applied alone or in combination to an infinite number of faces. In two studies, we tested the validity of the software for the AU appearance defined in the FACS manual and the conveyed emotionality of FACSGen expressions. In Experiment 1, four FACS-certified coders evaluated the complete set of 35 single AUs and 54 AU combinations for AU presence or absence, appearance quality, intensity, and asymmetry. In Experiment 2, lay participants performed a recognition task on emotional expressions created with FACSGen software and rated the similarity of expressions displayed by human and FACSGen faces. Results showed good to excellent classification levels for all AUs by the four FACS coders, suggesting that the AUs are valid exemplars of FACS specifications. Lay participants' recognition rates for nine emotions were high, and comparisons of human and FACSGen expressions were very similar. The findings demonstrate the effectiveness of the software in producing reliable and emotionally valid expressions, and suggest its application in numerous scientific areas, including perception, emotion, and clinical and neuroscience research

    FACSGen: A Tool to Synthesize Emotional Facial Expressions Through Systematic Manipulation of Facial Action Units

    Get PDF
    To investigate the perception of emotional facial expressions, researchers rely on shared sets of photos or videos, most often generated by actor portrayals. The drawback of such standardized material is a lack of flexibility and controllability, as it does not allow the systematic parametric manipulation of specific features of facial expressions on the one hand, and of more general properties of the facial identity (age, ethnicity, gender) on the other. To remedy this problem, we developed FACSGen: a novel tool that allows the creation of realistic synthetic 3D facial stimuli, both static and dynamic, based on the Facial Action Coding System. FACSGen provides researchers with total control over facial action units, and corresponding informational cues in 3D synthetic faces. We present four studies validating both the software and the general methodology of systematically generating controlled facial expression patterns for stimulus presentatio
    corecore