285 research outputs found

    Harmonic Estimation Of Distorted Power Signals Using PSO – Adaline

    Get PDF
    In recent times, power system harmonics has got a great deal of interest by many Power system Engineers. It is primarily due to the fact that non-linear loads comprise an increasing portion of the total load for a typical industrial plant. This increase in proportion of non-linear load and due to increased use of semi-conductor based power processors by utility companies has detoriated the Power Quality. Harmonics are a mathematical way of describing distortion in voltage or current waveform. The term harmonic refers to a component of a waveform occurs at an integer multiple of the fundamental frequency. Several methods had been proposed, such as discrete Fourier transforms, least square error technique, Kalman filtering, adaptive notch filters etc; Unlike above techniques, which treat harmonic estimation as completely non-linear problem there are some other hybrid techniques like Genetic Algorithm (GA), LS-Adaline, LS-PSOPC which decompose the problem of harmonic estimation into linear and non-linear problem. The results of LS-PSOPC and LS-Adaline has most attractive features of compactness and fastness. . Our new proposed technique tries to reduce the pitfalls in the LS-PSOPC, LS-Adaline techniques. With new technique we tried to estimate the Amplitudes by Least square estimator, frequency of the signal by PSOPC and phases of the harmonics by Adaline technique using MATLAB program. Harmonic signals were estimated by using LS-PSOPC, PSOPC-Adaline. Errors in estimating the signal by both the techniques are calculated and compared with each other

    Artificial Neural Network Active Power Filter with Immunity in Distributed Generation

    Get PDF
    With an electrical grid shifting toward Distributed Generation (DG), the emerging use of renewable energy resources is continuously creating challenges to maintain an acceptable electrical power quality thought-out the grid; Therefore, in an energy market where loads are becoming more and more sensitive in a distributed generation filled with polluting nonlinear loads, power quality improvement devices such Active Power Filters (APFs) have to evolve to meet the new standards, since theirs conventional control strategies can't properly operate when multiple power quality problems happens at once, even the one using AI based control as it will be proven in this paper. In this paper a neural network based Active Power Filter will be tested in a DG environment where both current and voltage harmonics, along with fast frequency variation occurs, we will see how the PLL can downgrade its performances enormously under such hostile conditions, We propose to solve this problem by replacing the conventional PLL with a nonlinear least square (NLS) frequency estimator, this novel NLS-ADALINE SAPF is immune in high DG penetration environment, as it will be tested and validated experimentally on an Opal-RT OP5600 FPGA based real-time simulator

    Interpolated-DFT-Based Fast and Accurate Amplitude and Phase Estimation for the Control of Power

    Full text link
    The quality of energy produced in renewable energy systems has to be at the high level specified by respective standards and directives. The estimation accuracy of grid signal parameters is one of the most important factors affecting this quality. This paper presents a method for a very fast and accurate amplitude and phase grid signal estimation using the Fast Fourier Transform procedure and maximum decay sidelobes windows. The most important features of the method are the elimination of the impact associated with the conjugate's component on the results and the straightforward implementation. Moreover, the measurement time is very short - even far less than one period of the grid signal. The influence of harmonics on the results is reduced by using a bandpass prefilter. Even using a 40 dB FIR prefilter for the grid signal with THD = 38%, SNR = 53 dB and a 20-30% slow decay exponential drift the maximum error of the amplitude estimation is approximately 1% and approximately 0.085 rad of the phase estimation in a real-time DSP system for 512 samples. The errors are smaller by several orders of magnitude for more accurate prefilters.Comment: in Metrology and Measurement Systems, 201

    Hybrid Signal Processing and Soft Computing approaches to Power System Frequency Estimation

    Get PDF
    Dynamic variation in power system frequency is required to be estimated for implementing the correcting measures. This paper presents power system frequency estimation by using RLS-Adaline and KF-Adaline algorithms. In the proposed hybrid approaches the weights of the Adaline are updated using RLS/KF algorithms. Frequency of power system signal is estimated from final updated weights of the Adaline. The performances of the proposed algorithms are studied through simulations for several critical cases that often arise in a power system. These studies show that the KF-Adaline algorithm is superior over the RLS-Adaline in estimating power system frequency. Studies made on experimental data also support the superiority

    Analytical Optimal Currents for Multiphase PMSMs Under Fault Conditions and Saturation

    Get PDF
    An original analytical expression is presented in this paper to obtain optimal currents minimizing the copper losses of a multi-phase Permanent Magnet Synchronous Motor (PMSM) under fault conditions. Based on the existing solutions [i]opt1 (without zero sequence of current constraint) and [i]opt2 (with zero sequence constraint), this new expression of currents [i]opt3 is obtained by means of a geometrical representation and can be applied to open-circuit, defect of current regulation, current saturation and machine phase short-circuit fault. Simulation results are presented to validate the proposed approach

    Study on Adaptive Harmonic Extraction Approaches in Active Power Filter Applications

    Get PDF
    Active power filter (APF) has now become a mature technology for harmonic and reactive power compensations in two-wire (single phase), three-wire (three phase without neutral), and four-wire (three phase with neutral) ac power networks with nonlinear loads. This paper presents a study on three different adaptive algorithms for active power filtering applications. These algorithms are adaptive linear combiner (ADALINE), least mean square adaptive notch filter (ANF-LMS), and recursive least square adaptive notch filter (ANF-RLS). In this paper, these approaches are employed for extracting load harmonic currents. The important issues associated with adaptive methods are accuracy and prediction speed. These issues will be addressed in the paper. Simulations using MATLAB/Simulink are presented to clarify the algorithms

    Kalman Filters for Parameter Estimation of Nonstationary Signals

    Get PDF
    An adaptive Taylor-Kalman filter with PSO tuning for tracking nonstationary signal parameters in a noisy environment with primary focus on time-varying power signals has been presented in this piece of work. In order to deal with the dynamic envelope of the power signal, second-order Taylor expansion has been used such that the Taylor coefficients are updated with the PSO-tuned Taylor-Kalman Filter algorithm. In addition to this, for fast convergence, a self-adaptive particle swarm optimization technique has been used for obtaining the optimal values of model and measurement error covariances of the Kalman filter. The proposed algorithm is linear and therefore has less computational burden, which is easier to be implemented on a hardware platform like DSP processor or FPGA. The proposed PSO-tuned Taylor-Kalman filter exhibits robust tracking capabilities even under changing signal dynamics, immune to critical noise conditions, harmonic contaminations, and also reveals excellent convergence properties
    corecore