1 research outputs found

    Cross-display attention switching in mobile interaction with large displays

    Get PDF
    Mobile devices equipped with features (e.g., camera, network connectivity and media player) are increasingly being used for different tasks such as web browsing, document reading and photography. While the portability of mobile devices makes them desirable for pervasive access to information, their small screen real-estate often imposes restrictions on the amount of information that can be displayed and manipulated on them. On the other hand, large displays have become commonplace in many outdoor as well as indoor environments. While they provide an efficient way of presenting and disseminating information, they provide little support for digital interactivity or physical accessibility. Researchers argue that mobile phones provide an efficient and portable way of interacting with large displays, and the latter can overcome the limitations of the small screens of mobile devices by providing a larger presentation and interaction space. However, distributing user interface (UI) elements across a mobile device and a large display can cause switching of visual attention and that may affect task performance. This thesis specifically explores how the switching of visual attention across a handheld mobile device and a vertical large display can affect a single user's task performance during mobile interaction with large displays. It introduces a taxonomy based on the factors associated with the visual arrangement of Multi Display User Interfaces (MDUIs) that can influence visual attention switching during interaction with MDUIs. It presents an empirical analysis of the effects of different distributions of input and output across mobile and large displays on the user's task performance, subjective workload and preference in the multiple-widget selection task, and in visual search tasks with maps, texts and photos. Experimental results show that the selection of multiple widgets replicated on the mobile device as well as on the large display, versus those shown only on the large display, is faster despite the cost of initial attention switching in the former. On the other hand, a hybrid UI configuration where the visual output is distributed across the mobile and large displays is the worst, or equivalent to the worst, configuration in all the visual search tasks. A mobile device-controlled large display configuration performs best in the map search task and equal to best (i.e., tied with a mobile-only configuration) in text- and photo-search tasks
    corecore