6,881 research outputs found

    An IOT-enabled System for Marine Data Acquisition and Cartography

    Get PDF
    Current satellite communication remains very expensive and impractical for most small to mid-sized vessels, and at the same time marine wireless networking is lack of network coverage. To solve this problem, this paper proposes a novel IOT (Internet of Things) enabled system for marine data acquisition and cartography based on Ship Ad-hoc Networks (SANET’s). Ships are equipped with Very High Frequency (VHF) radios and several sensors such as sea depth, temperature, wind speed and direction, etc. The collected sensory data is sent to 5G edge clouds incorporated at sink/base station nodes on shore, and ultimately aggregated at a central cloud on the internet to produce up to date cartography. The routing protocols deployed are DSDV (Destination-Sequenced Distance Vector), AODV (Ad hoc On-Demand Distance Vector), AOMDV (Ad hoc On-Demand Multipath Distance Vector) and DSR (Dynamic Source Routing) protocols, which are very popular in Mobile Ad-hoc Networks (MANET’s) and compatible with multi hop routing environments and scalability towards increased traffic and mobility. Simulation results verify the feasibility and efficiency of the proposed system that has packet delivery rates of up to 80% at shore base stations

    AN AODV-based clustering and routing scheme for mobile ad hoc networks

    Get PDF
    A mobile ad hoc network (MANET) is a collection of wireless mobile nodes forming a temporary network without the aid of any fixed communication infrastructure. Due to limited resources, frequent network partitions and unpredictable topological changes, proactive clustering schemes incur high overheads in this environment. In this paper, we propose an on-demand, distributed clustering algorithm for MANETs based on an Ad hoc On-demand Distance Vector (AODV) routing protocol. The use of on-demand routing protocol information for clustering reduces clustering overhead because no clusters are maintained unless they are needed. The clustering algorithm’s stability was assessed using clustering metrics such as cluster head and cluster members lifetime. Based on this clustering scheme, a cluster-based routing protocol was proposed to add scalability to the AODV routing protocol. Using simulation, a comparison was made with a pure AODV protocol. Simulation experiments show that the scheme results in stable and scalable clusters and Cluster- AODV routing introduces less overhead than the pure AODV protocol without clustering1st IFIP International Conference on Ad-Hoc NetWorkingRed de Universidades con Carreras en Informática (RedUNCI

    Performance Analysis of On-Demand Routing Protocols in Wireless Mesh Networks

    Get PDF
    Wireless Mesh Networks (WMNs) have recently gained a lot of popularity due to their rapid deployment and instant communication capabilities. WMNs are dynamically self-organizing, self-configuring and self-healing with the nodes in the network automatically establishing an adiej hoc network and preserving the mesh connectivity. Designing a routing protocol for WMNs requires several aspects to consider, such as wireless networks, fixed applications, mobile applications, scalability, better performance metrics, efficient routing within infrastructure, load balancing, throughput enhancement, interference, robustness etc. To support communication, various routing protocols are designed for various networks (e.g. ad hoc, sensor, wired etc.). However, all these protocols are not suitable for WMNs, because of the architectural differences among the networks. In this paper, a detailed simulation based performance study and analysis is performed on the reactive routing protocols to verify the suitability of these protocols over such kind of networks. Ad Hoc On-Demand Distance Vector (AODV), Dynamic Source Routing (DSR) and Dynamic MANET On-demand (DYMO) routing protocol are considered as the representative of reactive routing protocols. The performance differentials are investigated using varying traffic load and number of source. Based on the simulation results, how the performance of each protocol can be improved is also recommended.Wireless Mesh Networks (WMNs), IEEE 802.11s, AODV, DSR, DYMO

    Effective Mobile Routing Through Dynamic Addressing

    Get PDF
    Military communications has always been an important factor in military victory and will surely play an important part in future combat. In modern warfare, military units are usually deployed without existing network infrastructure. The IP routing protocol, designed for hierarchical networks cannot easily be applied in military networks due to the dynamic topology expected in military environments. Mobile ad-hoc networks (MANETs) represent an appropriate network for small military networks. But, most ad-hoc routing protocols suffer from the problem of scalability for large networks. Hierarchical routing schemes based on the IP address structure are more scalable than ad-hoc routing but are not flexible for a network with very dynamic topology. This research seeks a compromise between the two; a hybrid routing structure which combines mobile ad-hoc network routing with hierarchical network routing using pre-planned knowledge about where the various military units will be located and probable connections available. This research evaluates the performance of the hybrid routing and compares that routing with a flat ad-hoc routing protocol, namely the Ad-hoc On-demand Distance Vector (AODV) routing protocol with respect to goodput ratio, packet end to- end delay, and routing packet overhead. It shows that hybrid routing generates lower routing control overhead, better goodput ratio, and lower end-to-end packet delay than AODV routing protocol in situations where some a-priori knowledge is available

    Performance analysis of on-demand routing protocols in wireless mesh networks

    Get PDF
    Wireless Mesh Networks (WMNs) have recently gained a lot of popularity due to their rapid deployment and instant communication capabilities. WMNs are dynamically self-organizing, self-configuring and self-healing with the nodes in the network automatically establishing an adiej hoc network and preserving the mesh connectivity. Designing a routing protocol for WMNs requires several aspects to consider, such as wireless networks, fixed applications, mobile applications, scalability, better performance metrics, efficient routing within infrastructure, load balancing, throughput enhancement, interference, robustness etc. To support communication, various routing protocols are designed for various networks (e.g. ad hoc, sensor, wired etc.). However, all these protocols are not suitable for WMNs, because of the architectural differences among the networks. In this paper, a detailed simulation based performance study and analysis is performed on the reactive routing protocols to verify the suitability of these protocols over such kind of networks. Ad Hoc On-Demand Distance Vector (AODV), Dynamic Source Routing (DSR) and Dynamic MANET On-demand (DYMO) routing protocol are considered as the representative of reactive routing protocols. The performance differentials are investigated using varying traffic load and number of source. Based on the simulation results, how the performance of each protocol can be improved is also recommended

    AN AODV-based clustering and routing scheme for mobile ad hoc networks

    Get PDF
    A mobile ad hoc network (MANET) is a collection of wireless mobile nodes forming a temporary network without the aid of any fixed communication infrastructure. Due to limited resources, frequent network partitions and unpredictable topological changes, proactive clustering schemes incur high overheads in this environment. In this paper, we propose an on-demand, distributed clustering algorithm for MANETs based on an Ad hoc On-demand Distance Vector (AODV) routing protocol. The use of on-demand routing protocol information for clustering reduces clustering overhead because no clusters are maintained unless they are needed. The clustering algorithm’s stability was assessed using clustering metrics such as cluster head and cluster members lifetime. Based on this clustering scheme, a cluster-based routing protocol was proposed to add scalability to the AODV routing protocol. Using simulation, a comparison was made with a pure AODV protocol. Simulation experiments show that the scheme results in stable and scalable clusters and Cluster- AODV routing introduces less overhead than the pure AODV protocol without clustering1st IFIP International Conference on Ad-Hoc NetWorkingRed de Universidades con Carreras en Informática (RedUNCI

    Multi-Hop Routing Mechanism for Reliable Sensor Computing

    Get PDF
    Current research on routing in wireless sensor computing concentrates on increasing the service lifetime, enabling scalability for large number of sensors and supporting fault tolerance for battery exhaustion and broken nodes. A sensor node is naturally exposed to various sources of unreliable communication channels and node failures. Sensor nodes have many failure modes, and each failure degrades the network performance. This work develops a novel mechanism, called Reliable Routing Mechanism (RRM), based on a hybrid cluster-based routing protocol to specify the best reliable routing path for sensor computing. Table-driven intra-cluster routing and on-demand inter-cluster routing are combined by changing the relationship between clusters for sensor computing. Applying a reliable routing mechanism in sensor computing can improve routing reliability, maintain low packet loss, minimize management overhead and save energy consumption. Simulation results indicate that the reliability of the proposed RRM mechanism is around 25% higher than that of the Dynamic Source Routing (DSR) and ad hoc On-demand Distance Vector routing (AODV) mechanisms

    Performance Analysis of Adhoc On Demand Distance Vector (AODV) and Destination Sequence Routing (DSR) protocols in Mobile Adhoc Networks (MANET)

    Get PDF
    This research paper compares the performance of MANET routing protocol such as Ad-hoc On Demand Distance Vector (AODV) and Destination Sequence Routing (DSR) protocol at different Node mobility and node density under different Traffic loads. The experimental data that i got are different from the original data because of several factors like random seed value, number of packets to be sent, packet size, start and end time during simulation and interdeparture time of the Constant Bit Rate generator etc. AODV produced control packets with more than 34 times and DSR more than 4 times when the traffic load was increased. However, DSR is less vulnerable to node mobility and node density in terms routing overhead and is also best suited for scalability compared to AODV

    A Scalable Multicast Routing Protocol for Mobile Ad-Hoc Networks, Journal of Telecommunications and Information Technology, 2022, nr 2

    Get PDF
    The multicasting technique supports a variety of applications that require data to be instantaneously transmitted to a set of destination nodes. In environments with continuously moving nodes, such as mobile ad-hoc networks, the search for efficient routes from sources to the projected destinations is a common issue. Proposed Windmill protocol provides a scalable multicast solution for mobile ad-hoc networks. Windmill aims to improve routing protocol’s performance by introducing a hierarchal distributed routing algorithm and dividing the area into zones. Additionally, it attempts to demonstrate better scalability, performance and robustness when faced with frequent topology changes, by utilizing restricted directional flooding. A detailed and extensive simulated performance evaluation has been conducted to assess Windmill and compare it with multicast ad-hoc on-demand distance vector (MAODV) and on-demand multicast routing protocols (ODMRP). Simulation results show that the three protocols achieved high packet delivery rates in most scenarios. Results also show that Windmill is capable of achieving scalability by maintaining the minimum packet routing load, even upon increasing the nodes’ speed, the number of sources, the number of group members and the size of the simulated network. The results also indicate that it offers superior performance and is well suited for ad-hoc wireless networks with mobile hosts. The trade-off of using Windmill consists in slightly longer paths – a characteristic that makes it a good choice for applications that require simultaneous data transmission to a large set of nodes
    • …
    corecore