160,855 research outputs found

    Performance evaluation of hierarchical ad hoc networks.

    Get PDF
    Ad hoc networking is one of the most challenging areas of wireless communication. Theoretical analysis and experimental results show that QoS (Quality of Service) for each node degrades rapidly while the number of nodes increases in the network. One way to solve performance degradation is to use hierarchical network architectures. In this paper, we investigate performance improvements offered by hierarchical ad hoc networks over flat (non-hierarchical or conventional) ad hoc networks for QoS parameters, namely throughput capacity, delay and power efficiency. We investigated and identified trade-offs among those QoS parameters via computer simulations carried by Network Simulator 2 of University of California (NS-2). In those simulations, we created hierarchical ad hoc networks by clustering the networks using cluster head nodes. Initially network is static (no mobility). Results of static network simulations act as benchmark for the performance parameters. Later mobility scenarios are added into the network to observe how mobility affects the performance. In order to compare two architectures, hierarchical and flat, we systematically changed number of nodes, data packet generation rates, number of clusters, node densities and transmission ranges for the nodes. At the same time, we compared hierarchical ad hoc network architecture with WLAN architecture, which has full infrastructure. Simulation results state that throughput performance is linear with numbers of clusters; and in hierarchical architecture, power efficiency is doubled and delay is significantly lower than flat architecture. Our simulation results conclude that clustering schemes in wireless ad hoc networks can solve the scalability problem that exists in flat architectures.Dept. of Electrical and Computer Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2005 .Y83. Source: Masters Abstracts International, Volume: 44-01, page: 0499. Thesis (M.A.Sc.)--University of Windsor (Canada), 2005

    Mobile-IP ad-hoc network MPLS-based with QoS support.

    Get PDF
    The support for Quality of Service (QoS) is the main focus of this thesis. Major issues and challenges for Mobile-IP Ad-Hoc Networks (MANETs) to support QoS in a multi-layer manner are considered discussed and investigated through simulation setups. Different parameters contributing to the subjective measures of QoS have been considered and consequently, appropriate testbeds were formed to measure these parameters and compare them to other schemes to check for superiority. These parameters are: Maximum Round-Trip Delay (MRTD), Minimum Bandwidth Guaranteed (MBG), Bit Error Rate (BER), Packet Loss Ratio (PER), End-To-End Delay (ETED), and Packet Drop Ratio (PDR) to name a few. For network simulations, NS-II (Network Simulator Version II) and OPNET simulation software systems were used.Dept. of Electrical and Computer Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2005 .A355. Source: Masters Abstracts International, Volume: 44-03, page: 1444. Thesis (M.Sc.)--University of Windsor (Canada), 2005

    A spontaneous ad hoc network to share www access

    Get PDF
    In this paper, we propose a secure spontaneous ad-hoc network, based on direct peer-to-peer interaction, to grant a quick, easy, and secure access to the users to surf the Web. The paper shows the description of our proposal, the procedure of the nodes involved in the system, the security algorithms implemented, and the designed messages. We have taken into account the security and its performance. Although some people have defined and described the main features of spontaneous ad-hoc networks, nobody has published any design and simulation until today. Spontaneous networking will enable a more natural form of wireless computing when people physically meet in the real world. We also validate the success of our proposal through several simulations and comparisons with a regular architecture, taking into account the optimization of the resources of the devices. Finally, we compare our proposal with other caching techniques published in the related literature. The proposal has been developed with the main objective of improving the communication and integration between different study centers of low-resource communities. That is, it lets communicate spontaneous networks, which are working collaboratively and which have been created on different physical places.Authors want to give thanks to the anonymous reviewers for their valuable suggestions, useful comments, and proofreading of this paper. This work was partially supported by the Ministerio de Educacion y Ciencia, Spain, under Grant no. TIN2008-06441-C02-01, and by the "Ayudas complementarias para proyectos de I+D para grupos de calidad de la Generalitat Valenciana" (ACOMP/2010/005).Lacuesta Gilaberte, R.; Lloret, J.; García Pineda, M.; Peñalver Herrero, ML. (2010). A spontaneous ad hoc network to share www access. EURASIP Journal on Wireless Communications and Networking. 2010:1-16. https://doi.org/10.1155/2010/232083S1162010Preuß S, Cap CH: Overview of spontaneous networking-evolving concepts and technologies. In Rostocker Informatik-Berichte. Volume 24. Fachbereich Informatik der Universit at Rostock; 2000:113-123.Gallo S, Galluccio L, Morabito G, Palazzo S: Rapid and energy efficient neighbor discovery for spontaneous networks. Proceedings of the 7th ACM International Symposium on Modeling, Analysis and Simulation of Wireless and Mobile Systems, October 2004, Venice, ItalyLatvakoski J, Pakkala D, Pääkkönen P: A communication architecture for spontaneous systems. IEEE Wireless Communications 2004, 11(3):36-42. 10.1109/MWC.2004.1308947Zarate Silva VH, De Cruz Salgado EI, Quintana FR: AWISPA: an awareness framework for collaborative spontaneous networks. Proceedings of the 36th ASEE/IEEE Frontiers in Education Conference (FIE '06), October 2006 1-6.Feeney LM, Ahlgren B, Westerlund A: Spontaneous networking: an application-oriented approach to ad hoc networking. IEEE Communications Magazine 2001, 39(6):176-181. 10.1109/35.925687Perkins CE, Bhagwat P: Highly dynamic destination-sequenced distance-vector routing (DSDV) for mobile computers. Proceedings of the Conference on Communications Architectures, Protocols and Applications (SIGCOMM '94), August 1994 234-244.Johnson DB, Maltz DA, Broch J: DSR: The Dynamic Source Routing Protocol for Multihop Wireless Ad Hoc Networks, Ad Hoc Networking. Addison-Wesley Longman Publishing, Boston, Mass, USA; 2001.Perkins C, Belding-Royer E, Das S: Ad hoc on-demand distance vector (AODV) routing. RFC 3561, July 2003Park V, Corson MS: IETF MANET Internet Draft "draft-ietf-MANET-tora-spe03.txt". Novemmer 2000.Viana AC, De Amorim MD, Fdida S, de Rezende JF: Self-organization in spontaneous networks: the approach of DHT-based routing protocols. Ad Hoc Networks 2005, 3(5):589-606.Gilaberte RL, Herrero LP: IP addresses configuration in spontaneous networks. Proceedings of the 9th WSEAS International Conference on Computers, July 2005, Athens, GreeceViana AC, Dias de Amorim M, Fdida S, de Rezende JF: Self-organization in spontaneous networks: the approach of DHT-based routing protocols. Ad Hoc Networks 2005, 3(5):589-606.Alvarez-Hamelin JI, Carneiro Viana A, Dias De Amorim M: Architectural considerations for a self-configuring routing scheme for spontaneous networks.,Tech. Rep. 1 October 2005.Lacuesta R, Peñalver L: Automatic configuration of ad-hoc networks: establishing unique IP link-local addresses. Proceedings of the International Conference on Emerging Security Information, Systems and Technologies (SECURWARE '07), October 2007, Valencia, SpainFoulks EF: Social network therapies and society: an overview. Contemporary Family Therapy 1985, 3(4):316-320.Wang Y, Wu H: DFT-MSN: the delay/fault-tolerant mobile sensor network for pervasive information gathering. Proceedings of the 25th IEEE International Conference on Computer Communications (INFOCOM '06), April 2006Kindberg T, Zhang K: Validating and securing spontaneous associations between wireless devices. In Proceedings of the 6th Information Security Conference (ISC '03), 2003. Springer; 44-53.Al-Jaroodi J: Routing security in open/dynamic mobile ad hoc networks. The International Arab Journal of Information Technology 2007, 4(1):17-25.Stajano F, Anderson RJ: The resurrecting duckling: security issues for ad-hoc wireless networks. Proceedings of the 7th International Workshop on Security Protocols, April 1999 172-194.Zhou L, Haas ZJ: Securing ad hoc networks. IEEE Network 1999, 13(6):24-30. 10.1109/65.806983Hauspie M, Simplot-Ryl I: Cooperation in ad hoc networks: enhancing the virtual currency based models. Proceedings of the 1st International Conference on Integrated Internet Ad Hoc and Sensor Networks (InterSense '06), May 2006, Nice, FranceWang X, Dai F, Qian L, Dong H: A way to solve the threat of selfish and malicious nodes for ad hoc networks. Proceedings of the International Symposium on Information Science and Engieering (ISISE '08), December 2008, Shanghai, China 1: 368-370.Kargl F, Klenk A, Weber M, Schlott S: Sensors for detection of misbehaving nodes in MANETs. Detection of Intrusion and Malware and Vulnerability Assessment (DIMVA '04), July 2004, Dortmund, Germany 83-97.Kargl F, Geiss A, Scholott S, Weber M: Secure dynamic source routing. Proceedings of the 38th Annual Hawaii International Conference on System Sciences (HICSS '05), January 2005, Big Island, Hawaii, USAGokhale S, Dasgupta P: Distributed authentication for peer-to-peer networks. Proceedings of the Symposium on Applications and the Internet Workshops, January 2003 347-353.Capkun S, Buttyán L, Hubaux J-P: Self-organized public-key management for mobile ad hoc networks. IEEE Transactions on Mobile Computing 2003, 2(1):52-64. 10.1109/TMC.2003.1195151Stajano F, Anderson R: The resurrecting duckling security issues for ad-hoc wireless networks. In Proceedings of the 7th International Workshop on Security Protocols, 1999, Berlin, Germany, Lecture Notes in Computer Science. Volume 1796. Springer; 172-194.Balfanz D, Smetters DK, Stewart P, Wong HC: Talking to strangers: authentication in ad-hoc wireless networks. Proceedings of the International Symposium on Network and Distributed Systems Security (NDSS '02), February 2002, San Diego, Calif, USABarbara D, Imielinski T: Sleepers and workaholics: caching strategies in mobile environments. Proceedings of the ACM SIGMOD International Conference on Management of Data, May 1994 1-12.Cao G: A scalable low-latency cache invalidation strategy for mobile environments. IEEE Transactions on Knowledge and Data Engineering 2003, 15(5):1251-1265. 10.1109/TKDE.2003.1232276Hu Q, Lee D: Cache algorithms based on adaptive invalidation reports for mobile environments. Cluster Computing 1998, 1(1):39-50. 10.1023/A:1019012927328Jing J, Elmagarmid A, Helal A, Alonso R: Bit-sequences: an adaptive cache invalidation method in mobile client/server environments. Mobile Networks and Applications 1997, 2(2):115-127. 10.1023/A:1013616213333Kahol A, Khurana S, Gupta S, Srimani P: An efficient cache management scheme for mobile environment. Proceedings of the 20th International Conference on Distributied Computing System (ICDCS '00), April 2000, Taipei, Taiwan 530-537.Kazar M: Synchronization and caching issues in the Andrew file system. Proceedings of USENIX Conference, February 1988, Dallas, Tex, USA 27-36.Roussopoulos M, Baker M: CUP: controlled update propagation in peer-to-peer networks. Proceedings of USENIX Annual Technical Conference, June 2003, San Antonio, Tex, USASandberg S, Kleiman S, Goldberg D, Walsh D, Lyon B: Design and implementation of the sun network file system. Proceedings of USENIX Summer Conference, June 1985, Portland, Ore, USA 119-130.Wu K, Yu PS, Chen M: Energy-efficient caching for wireless mobile computing. Proceedings of the 12th IEEE International Conference on Data Engineering, February-March 1996, New Orleans, La, USA 336-343.Yeung MKH, Kwok Y-K: Wireless cache invalidation schemes with link adaptation and downlink traffic. IEEE Transactions on Mobile Computing 2005, 4(1):68-83.Wessels D, Claffy K: Internet cache protocol (IC) v.2. http://www.ietf.org/rfc/rfc2186.txtFan L, Cao P, Almeida J, Broder AZ: Summary cache: a scalable wide-area web cache sharing protocol. IEEE/ACM Transactions on Networking 2000, 8(3):281-293. 10.1109/90.851975Dykes SG, Robbins KA: A viability analysis of cooperative proxy caching. Proceedings of the 20th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM '01), April 2001, Anchorage, Alaska, USA 3: 1205-1214.Wessels D, Claffy K: RFC 2186: Internet cache protocol (ICP), version 2. The Internet Engineering Taskforce, September 1997Wessels D, Claffy K: RFC 2187: application of internet cache protocol (ICP), version 2. The Internet Engineering Taskforce, September 1997Ren Q, Dunhan MH: Using semantic caching to manage location dependent data in mobile computing. Proceedings of the 6th Annual International Conference on Mobile Computing and Networking, August 2000, Boston, Mass, USA 210-221.Lim S, Lee W-C, Cao G, Das CR: Cache invalidation strategies for internet-based mobile ad hoc networks. Computer Communications 2007, 30(8):1854-1869. 10.1016/j.comcom.2007.02.020Park B-N, Lee W, Lee C: QoS-aware internet access schemes for wireless mobile ad hoc networks. Computer Communications 2007, 30(2):369-384. 10.1016/j.comcom.2006.09.004Hara T: Effective replica allocation in ad hoc networks for improving data accessibility. Proceedings of the 20th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM '01), April 2001, Anchorage, Alaska, USA 1568-1576.Papadopouli M, Schulzrinne H: Effects of power conservation, wireless converage and cooperation on data dissemination among mobile devices. Proceedings of the ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc '01), October 2001, Long Beach, Calif, USA 117-127.Can P, Irani S: Cost-aware WWW proxy caching algorithms. Proceedings of the USENIX Symposium on lnternet Technology and Systems, December 1997Rizzo L, Vicisano L: Replacement policies for a proxy cache. IEEE/ACM Transactions on Networking 2000, 8(2):158-170. 10.1109/90.842139Williams S, Abrams M, Strandridge CR, Abdulla G, Fox EA: Removal policies in network caches for world-wide web documents. Proceedings of the ACM SIGCOMM Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications, August 1996, Palo Alto, Calif, USA 293-305.Hara T: Replica allocation in ad hoc networks with period data update. Proceedings of the 3rd International Conference on Mobile Data Management (MDM '02), July 2002, Edmonton, Canada 79-86.Papadopouli M, Schulzrinne H: Effects of power conservation, wireless coverage and cooperation on data dissemination among mobile devices. Proceedings of the ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc '01), October 2001, Long Beach, Calif, USA 117-127.Sailhan F, Issarny V: Cooperative caching in ad hoc networks. Proceedings of the 4th International Conference on Mobile Data Management (MDM '03), January 2003, Melbourne, Australia, Lecture Notes in Computer Science 2574: 13-28.Yin L, Cao G: Supporting cooperative caching in ad hoc networks. IEEE Transactions on Mobile Computing 2006, 5(1):77-89.Karumanchi G, Muralidharan S, Prakash R: Information dissemination in partitionable mobile ad hoc networks. Proceedings of the 18th IEEE Symposium on Reliable Distributed Systems (SRDS '99), October 1999, Lausanne, Switzerland 4-13.Corson MS, Macker JP, Cirincione GH: Internet-based mobile ad hoc networking. IEEE Internet Computing 1999, 3(4):63-70. 10.1109/4236.780962Lim S, Lee W-C, Cao G, Das CR: A novel caching scheme for improving internet-based mobile ad hoc networks performance. Ad Hoc Networks 2006, 4(2):225-239. 10.1016/j.adhoc.2004.04.013Opnet Modeler http://www.opnet.com/solutions/network_rd/modeler_wireless.htmlLacuesta R, Lloret J, Garcia M, Peñalver L: Two secure and energy-saving spontaneous ad-hoc protocol for wireless mesh client networks. Journal of Network and Computer Applications. In pres

    Extremal Properties of Three Dimensional Sensor Networks with Applications

    Full text link
    In this paper, we analyze various critical transmitting/sensing ranges for connectivity and coverage in three-dimensional sensor networks. As in other large-scale complex systems, many global parameters of sensor networks undergo phase transitions: For a given property of the network, there is a critical threshold, corresponding to the minimum amount of the communication effort or power expenditure by individual nodes, above (resp. below) which the property exists with high (resp. a low) probability. For sensor networks, properties of interest include simple and multiple degrees of connectivity/coverage. First, we investigate the network topology according to the region of deployment, the number of deployed sensors and their transmitting/sensing ranges. More specifically, we consider the following problems: Assume that nn nodes, each capable of sensing events within a radius of rr, are randomly and uniformly distributed in a 3-dimensional region R\mathcal{R} of volume VV, how large must the sensing range be to ensure a given degree of coverage of the region to monitor? For a given transmission range, what is the minimum (resp. maximum) degree of the network? What is then the typical hop-diameter of the underlying network? Next, we show how these results affect algorithmic aspects of the network by designing specific distributed protocols for sensor networks

    Design and analysis of a beacon-less routing protocol for large volume content dissemination in vehicular ad hoc networks

    Get PDF
    Largevolumecontentdisseminationispursuedbythegrowingnumberofhighquality applications for Vehicular Ad hoc NETworks(VANETs), e.g., the live road surveillance service and the video-based overtaking assistant service. For the highly dynamical vehicular network topology, beacon-less routing protocols have been proven to be efficient in achieving a balance between the system performance and the control overhead. However, to the authors’ best knowledge, the routing design for large volume content has not been well considered in the previous work, which will introduce new challenges, e.g., the enhanced connectivity requirement for a radio link. In this paper, a link Lifetime-aware Beacon-less Routing Protocol (LBRP) is designed for large volume content delivery in VANETs. Each vehicle makes the forwarding decision based on the message header information and its current state, including the speed and position information. A semi-Markov process analytical model is proposed to evaluate the expected delay in constructing one routing path for LBRP. Simulations show that the proposed LBRP scheme outperforms the traditional dissemination protocols in providing a low end-to-end delay. The analytical model is shown to exhibit a good match on the delay estimation with Monte Carlo simulations, as well
    corecore