4,689 research outputs found

    Acyclic edge coloring of graphs

    Full text link
    An {\em acyclic edge coloring} of a graph GG is a proper edge coloring such that the subgraph induced by any two color classes is a linear forest (an acyclic graph with maximum degree at most two). The {\em acyclic chromatic index} \chiup_{a}'(G) of a graph GG is the least number of colors needed in an acyclic edge coloring of GG. Fiam\v{c}\'{i}k (1978) conjectured that \chiup_{a}'(G) \leq \Delta(G) + 2, where Δ(G)\Delta(G) is the maximum degree of GG. This conjecture is well known as Acyclic Edge Coloring Conjecture (AECC). A graph GG with maximum degree at most κ\kappa is {\em κ\kappa-deletion-minimal} if \chiup_{a}'(G) > \kappa and \chiup_{a}'(H) \leq \kappa for every proper subgraph HH of GG. The purpose of this paper is to provide many structural lemmas on κ\kappa-deletion-minimal graphs. By using the structural lemmas, we firstly prove that AECC is true for the graphs with maximum average degree less than four (\autoref{NMAD4}). We secondly prove that AECC is true for the planar graphs without triangles adjacent to cycles of length at most four, with an additional condition that every 55-cycle has at most three edges contained in triangles (\autoref{NoAdjacent}), from which we can conclude some known results as corollaries. We thirdly prove that every planar graph GG without intersecting triangles satisfies \chiup_{a}'(G) \leq \Delta(G) + 3 (\autoref{NoIntersect}). Finally, we consider one extreme case and prove it: if GG is a graph with Δ(G)3\Delta(G) \geq 3 and all the 3+3^{+}-vertices are independent, then \chiup_{a}'(G) = \Delta(G). We hope the structural lemmas will shed some light on the acyclic edge coloring problems.Comment: 19 page

    Minimum feedback vertex set and acyclic coloring

    Get PDF
    International audienceIn the feedback vertex set problem, the aim is to minimize, in a connected graph G =(V,E), the cardinality of the set overline(V) (G) \subseteq V , whose removal induces an acyclic subgraph. In this paper, we show an interesting relationship between the minimum feedback vertex set problem and the acyclic coloring problem (which consists in coloring vertices of a graph G such that no two colors induce a cycle in G). Then, using results from acyclic coloring, as well as other techniques, we are able to derive new lower and upper bounds on the cardinality of a minimum feedback vertex set in large families of graphs, such as graphs of maximum degree 3, of maximum degree 4, planar graphs, outerplanar graphs, 1-planar graphs, k-trees, etc. Some of these bounds are tight (outerplanar graphs, k-trees), all the others differ by a multiplicative constant never exceeding 2
    corecore