434 research outputs found

    Photomechanical actuation of liquid crystal nanotube elastomers.

    Get PDF
    Elastomeric composites based on nanotube liquid crystals (LCs) that preserve the internal orientation of nanotubes could lead to anisotropic physical properties and flexible energy conversion. Using simple vacuum filtration technique of fabricating nanotube LCs films and utilizing a transfer process to poly (dimethyl) siloxane wherein the LCs arrangement is preserved, in this thesis we demonstrate unique and reversible photomechanical response of this layered composite to excitation by near infra-red (NIR) light at ultra-low nanotube mass fractions. Schlieren textures were noted in these LCs composites confirming long range macroscopic nematic order of nanotubes within the composites. Maximum photomechanical stress of ~23kPa, energy conversion factor of 0.5 MPa/W and energy conversion of ~0.0045% was achieved. The combination of properties, namely, optical anisotropy, reversible mechanical response to NIR excitation and flexible energy conversion all in one system makes nanotube LCs elastomers important for soft photochromic actuation, energy conversion and photo-origami applications

    Versatile High Performance Photomechanical Actuators Based on Two-dimensional Nanomaterials

    Get PDF
    The ability to convert photons into mechanical motion is of significant importance for many energy conversion and reconfigurable technologies. Establishing an optical-mechanical interface has been attempted since 1881; nevertheless, only few materials exist that can convert photons of different wavelengths into mechanical motion that is large enough for practical import. Recently, various nanomaterials including nanoparticles, nanowires, carbon nanotubes, and graphene have been used as photo-thermal agents in different polymer systems and triggered using near infrared (NIR) light for photo-thermal actuation. In general, most photomechanical actuators based on sp bonded carbon namely nanotube and graphene are triggered mainly using near infra-red light and they do not exhibit wavelength selectivity. Layered transition metal dichalcogenides (TMDs) provide intriguing opportunities to develop low cost, light and wavelength tunable stimuli responsive systems that are not possible with their conventional macroscopic counterparts. Compared to graphene, which is just a layer of carbon atoms and has no bandgap, TMDs are stacks of triple layers with transition metal layer between two chalcogen layers and they also possess an intrinsic bandgap. While the atoms within the layers are chemically bonded using covalent bonds, the triple layers can be mechanically/chemically exfoliated due to weak van der Waals bonding between the layers. Due to the large optical absorption in these materials, they are already being exploited for photocatalytic, photoluminescence, photo-transistors, and solar cell applications. The large breaking strength together with large band gap and strong light- matter interaction in these materials have resulted in plethora of investigation on electronic, optical and magnetic properties of such layered ultra-thin semiconductors. This dissertation will go in depth in the synthesis, characterization, development, and application of two- dimensional (2D) nanomaterials, with an emphasis on TMDs and molybdenum disulfide (MoS2), when used as photo-thermal agents in photoactuation technologies. It will present a new class of photo-thermal actuators based on TMDs and hyperelastic elastomers with large opto-mechanical energy conversion, and investigate the layer-dependent optoelectronics and light-matter interaction in these nanomaterials and nanocomposites. Different attributes of semiconductive nanoparticles will be studied through different applications, and the possibility of globally/locally engineering the bandgap of such nanomaterials, along with its consequent effect on optomechanical properties of photo thermal actuators will be investigated. Using liquid phase exfoliation in deionized water, inks based on 2D- materials will be developed, and inkjet printing of 2D materials will be utilized as an efficient method for fast fabrication of functional devices based on nanomaterials, such as paper-graphene-based photo actuators. The scalability, simplicity, biocompatibility, and fast fabrication characteristics of the inkjet printing of 2D materials along with its applicability to a variety of substrates such as plastics and papers can potentially be implemented to fabricate high-performance devices with countless applications in soft robotics, wearable technologies, flexible electronics and optoelectronics, bio- sensing, photovoltaics, artificial skins/muscles, transparent displays and photo-detectors

    Light Driven Actuators

    Get PDF
    In this project, we dispersed graphene nanoplatelets (GNPs) into a polydimethylsiloxane (PDMS) elastomer matrix to test the nanocomposites mechanical responses after being exposed to near-infrared light in five timed illumination cycles of on for 90 seconds and off for 50 seconds. Different concentration levels of GNP to PDMS (0.1-2 wt%) nanocomposites were fabricated and varying levels of pre-strain (3%-40%) were applied to each test sample before it underwent the 5 illumination cycles. Highly stretched test samples showed reversible contraction while lowly stretched test samples showed reversible expansion

    Liquid Crystal Elastomer Waveguide Actuators

    Get PDF
    While most photomechanical materials developed to date have relied on free‐space illumination to drive actuation, this strategy fails when direct line‐of‐site access is precluded. In this study, waveguided light is harnessed by liquid crystal elastomer (LCE) nanocomposites to drive actuation. Using photo‐chemical reduction of gold salts to plasmonic nanoparticles, prescription of photoresponsive regions within fibers of mono‐domain LCEs is demonstrated with control over both the location along the fiber axis, as well as in the azimuthal direction. Due to localized photothermal heating provided by plasmonic absorption of waveguided light and resulting inhomogeneous thermally induced deformation of the LCE, reversible bending along multiple axes is demonstrated

    Bimorphic polymeric photomechanical actuator

    Get PDF
    A bimorphic polymeric photomechanical actuator, in one embodiment using polyvinylidene fluoride (PVDF) as a photosensitive body, transmitting light over fiber optic cables, and controlling the shape and pulse duration of the light pulse to control movement of the actuator. Multiple light beams are utilized to generate different ranges of motion for the actuator from a single photomechanical body and alternative designs use multiple light beams and multiple photomechanical bodies to provide controlled movement. Actuator movement using one or more ranges of motion is utilized to control motion to position an actuating element in three dimensional space

    An optically activated cantilever using photomechanical effects in dye-doped polymer fibers

    Full text link
    We report on what we believe is the first demonstration of an optically activated cantilever due to photomechanical effects in a dye-doped polymer optical fiber. The fiber is observed to bend when light is launched off-axis. The displacement angle monotonically increases as a function of the distance between the illumination point and the fiber axis, and is consistent with differential light-induced length changes. The photothermal and photo-reorientation mechanisms, each with its own distinct response time, are proposed to explain the observed time dependence. The measured degree of bending is consistent with a model that we have proposed which includes coupling between photoisomerization and heating. Most importantly, we have discovered that at high light intensity, a cooperative release of stress results in cis-to-trans isomerization that yields a large and abrupt length change.Comment: 13 pages, 16 figure
    corecore