72 research outputs found

    Advances in state estimation, diagnosis and control of complex systems

    Get PDF
    This dissertation intends to provide theoretical and practical contributions on estimation, diagnosis and control of complex systems, especially in the mathematical form of descriptor systems. The research is motivated by real applications, such as water networks and power systems, which require a control system to provide a proper management able to take into account their specific features and operating limits in presence of uncertainties related to their operation and failures from component malfunctions. Such a control system is expected to provide an optimal operation to obtain efficient and reliable performance. State estimation is an essential tool, which can be used not only for fault diagnosis but also for the controller design. To achieve a satisfactory robust performance, set theory is chosen to build a general framework for descriptor systems subject to uncertainties. Under certain assumptions, these uncertainties are propagated and bounded by deterministic sets that can be explicitly characterized at each iteration step. Moreover, set-invariance characterizations for descriptor systems are also of interest to describe the steady performance, which can also be used for active mode detection. For the controller design for complex systems, new developments of economic model predictive control (EMPC) are studied taking into account the case of underlying periodic behaviors. The EMPC controller is designed to be recursively feasible even with sudden changes in the economic cost function and the closed-loop convergence is guaranteed. Besides, a robust technique is plugged into the EMPC controller design to maintain these closed-loop properties in presence of uncertainties. Engineering applications modeled as descriptor systems are presented to illustrate these control strategies. From the real applications, some additional difficulties are solved, such as using a two-layer control strategy to avoid binary variables in real-time optimizations and using nonlinear constraint relaxation to deal with nonlinear algebraic equations in the descriptor model. Furthermore, the fault-tolerant capability is also included in the controller design for descriptor systems by means of the designed virtual actuator and virtual sensor together with an observer-based delayed controller.Esta tesis propone contribuciones de carácter teórico y aplicado para la estimación del estado, el diagnóstico y el control óptimo de sistemas dinámicos complejos en particular, para los sistemas descriptores, incluyendo la capacidad de tolerancia a fallos. La motivación de la tesis proviene de aplicaciones reales, como redes de agua y sistemas de energía, cuya naturaleza crítica requiere necesariamente un sistema de control para una gestión capaz de tener en cuenta sus características específicas y límites operativos en presencia de incertidumbres relacionadas con su funcionamiento, así como fallos de funcionamiento de los componentes. El objetivo es conseguir controladores que mejoren tanto la eficiencia como la fiabilidad de dichos sistemas. La estimación del estado es una herramienta esencial que puede usarse no solo para el diagnóstico de fallos sino también para el diseño del control. Con este fin, se ha decidido utilizar metodologías intervalares, o basadas en conjuntos, para construir un marco general para los sistemas de descriptores sujetos a incertidumbres desconocidas pero acotadas. Estas incertidumbres se propagan y delimitan mediante conjuntos que se pueden caracterizar explícitamente en cada instante. Por otra parte, también se proponen caracterizaciones basadas en conjuntos invariantes para sistemas de descriptores que permiten describir comportamientos estacionarios y resultan útiles para la detección de modos activos. Se estudian también nuevos desarrollos del control predictivo económico basado en modelos (EMPC) para tener en cuenta posibles comportamientos periódicos en la variación de parámetros o en las perturbaciones que afectan a estos sistemas. Además, se demuestra que el control EMPC propuesto garantiza la factibilidad recursiva, incluso frente a cambios repentinos en la función de coste económico y se garantiza la convergencia en lazo cerrado. Por otra parte, se utilizan técnicas de control robusto pata garantizar que las estrategias de control predictivo económico mantengan las prestaciones en lazo cerrado, incluso en presencia de incertidumbre. Los desarrollos de la tesis se ilustran con casos de estudio realistas. Para algunas de aplicaciones reales, se resuelven dificultades adicionales, como el uso de una estrategia de control de dos niveles para evitar incluir variables binarias en la optimización y el uso de la relajación de restricciones no lineales para tratar las ecuaciones algebraicas no lineales en el modelo descriptor en las redes de agua. Finalmente, se incluye también una contribución al diseño de estrategias de control con tolerancia a fallos para sistemas descriptores

    Comprehensive summary of solid oxide fuel cell control : a state-of-the-art review

    Get PDF
    Hydrogen energy is a promising renewable resource for the sustainable development of society. As a key member of the fuel cell (FC) family, the solid oxide fuel cell (SOFC) has attracted a lot of attention because of characteristics such as having various sources as fuel and high energy conversion efficiency, and being pollution-free. SOFC is a highly coupled, nonlinear, and multivariable complex system, and thus it is very important to design an appropriate control strategy for an SOFC system to ensure its safe, reliable, and efficient operation. This paper undertakes a comprehensive review and detailed summary of the state-of-the-art control approaches of SOFC. These approaches are divided into eight categories of control: proportional integral differential (PID), adaptive (APC), robust, model predictive (MPC), fuzzy logic (FLC), fault-tolerant (FTC), intelligent and observer-based. The SOFC control approaches are carefully evaluated in terms of objective, design, application/scenario, robustness, complexity, and accuracy. Finally, five perspectives are proposed for future research directions

    KnowSafe: Combined Knowledge and Data Driven Hazard Mitigation in Artificial Pancreas Systems

    Full text link
    Significant progress has been made in anomaly detection and run-time monitoring to improve the safety and security of cyber-physical systems (CPS). However, less attention has been paid to hazard mitigation. This paper proposes a combined knowledge and data driven approach, KnowSafe, for the design of safety engines that can predict and mitigate safety hazards resulting from safety-critical malicious attacks or accidental faults targeting a CPS controller. We integrate domain-specific knowledge of safety constraints and context-specific mitigation actions with machine learning (ML) techniques to estimate system trajectories in the far and near future, infer potential hazards, and generate optimal corrective actions to keep the system safe. Experimental evaluation on two realistic closed-loop testbeds for artificial pancreas systems (APS) and a real-world clinical trial dataset for diabetes treatment demonstrates that KnowSafe outperforms the state-of-the-art by achieving higher accuracy in predicting system state trajectories and potential hazards, a low false positive rate, and no false negatives. It also maintains the safe operation of the simulated APS despite faults or attacks without introducing any new hazards, with a hazard mitigation success rate of 92.8%, which is at least 76% higher than solely rule-based (50.9%) and data-driven (52.7%) methods.Comment: 16 pages, 10 figures, 9 tables, submitted to the IEEE for possible publicatio

    LCCC Workshop on Process Control

    Get PDF

    Invariant Set-based Methods for the Computation of Input and Disturbance Sets

    Get PDF
    This dissertation presents new methods to synthesize disturbance sets and input constraints set for constrained linear time-invariant systems. Broadly, we formulate and solve optimization problems that (a) compute disturbance sets such that the reachable set of outputs approximates an assigned set, and (b) compute input constraint sets guaranteeing the stabilizability of a given set of initial conditions. The proposed methods find application in the synthesis and analysis of several control schemes such as decentralized control, reduced-order control, etc., as well as in practical system design problems such as actuator selection, etc. The key tools supporting the develpment of the aforementioned methods are Robust Positive Invariant (RPI) sets. In particular, the problems that we formulate are such that they co-synthesize disturbance/input constraint sets along with the associated RPI sets. This requires embedding existing techniques to compute RPI sets within an optimization problem framework, that we facilitate by developing new results related to properties of RPI sets, polytope representations, inclusion encoding techniques, etc. In order to solve the resulting optimization problems, we develop specialized structure-exploiting solvers that we numerically demonstrate to outperform conventional solution methods. We also demonstrate several applications of the methods we propose for control design. Finally, we extend the methods to tackle data-driven control synthesis problems in an identification-for-control framework
    corecore