3,313 research outputs found

    ANOMALY INFERENCE BASED ON HETEROGENEOUS DATA SOURCES IN AN ELECTRICAL DISTRIBUTION SYSTEM

    Get PDF
    Harnessing the heterogeneous data sets would improve system observability. While the current metering infrastructure in distribution network has been utilized for the operational purpose to tackle abnormal events, such as weather-related disturbance, the new normal we face today can be at a greater magnitude. Strengthening the inter-dependencies as well as incorporating new crowd-sourced information can enhance operational aspects such as system reconfigurability under extreme conditions. Such resilience is crucial to the recovery of any catastrophic events. In this dissertation, it is focused on the anomaly of potential foul play within an electrical distribution system, both primary and secondary networks as well as its potential to relate to other feeders from other utilities. The distributed generation has been part of the smart grid mission, the addition can be prone to electronic manipulation. This dissertation provides a comprehensive establishment in the emerging platform where the computing resources have been ubiquitous in the electrical distribution network. The topics covered in this thesis is wide-ranging where the anomaly inference includes load modeling and profile enhancement from other sources to infer of topological changes in the primary distribution network. While metering infrastructure has been the technological deployment to enable remote-controlled capability on the dis-connectors, this scholarly contribution represents the critical knowledge of new paradigm to address security-related issues, such as, irregularity (tampering by individuals) as well as potential malware (a large-scale form) that can massively manipulate the existing network control variables, resulting into large impact to the power grid

    Validation of a new method to estimate energy use for space heating and hot water production from low-resolution heat meter data

    Get PDF
    One of the initiatives to reach the European decarbonization goal is the roll-out of smart heating meters in the building stock. However, these meters often record the total energy usage with only hourly resolution, without distinguishing between space heating (SH) and domestic hot water (DHW) production. To tackle this limitation, this paper presents the validation of a new methodology to estimate the SH and DHW from total measurements in different building types in three countries (Denmark, Switzerland, and Italy). The method employs a combined smoothing algorithm with a support vector regression (SVR) to estimate the different heating uses. The estimation results are compared with the different countries’ DHW compliance calculations. The comparison showed that the compliance calculations outperformed this method by considering the validation dataset characteristics

    Advanced Occupancy Measurement Using Sensor Fusion

    Get PDF
    With roughly about half of the energy used in buildings attributed to Heating, Ventilation, and Air conditioning (HVAC) systems, there is clearly great potential for energy saving through improved building operations. Accurate knowledge of localised and real-time occupancy numbers can have compelling control applications for HVAC systems. However, existing technologies applied for building occupancy measurements are limited, such that a precise and reliable occupant count is difficult to obtain. For example, passive infrared (PIR) sensors commonly used for occupancy sensing in lighting control applications cannot differentiate between occupants grouped together, video sensing is often limited by privacy concerns, atmospheric gas sensors (such as CO2 sensors) may be affected by the presence of electromagnetic (EMI) interference, and may not show clear links between occupancy and sensor values. Past studies have indicated the need for a heterogeneous multi-sensory fusion approach for occupancy detection to address the short-comings of existing occupancy detection systems. The aim of this research is to develop an advanced instrumentation strategy to monitor occupancy levels in non-domestic buildings, whilst facilitating the lowering of energy use and also maintaining an acceptable indoor climate. Accordingly, a novel multi-sensor based approach for occupancy detection in open-plan office spaces is proposed. The approach combined information from various low-cost and non-intrusive indoor environmental sensors, with the aim to merge advantages of various sensors, whilst minimising their weaknesses. The proposed approach offered the potential for explicit information indicating occupancy levels to be captured. The proposed occupancy monitoring strategy has two main components; hardware system implementation and data processing. The hardware system implementation included a custom made sound sensor and refinement of CO2 sensors for EMI mitigation. Two test beds were designed and implemented for supporting the research studies, including proof-of-concept, and experimental studies. Data processing was carried out in several stages with the ultimate goal being to detect occupancy levels. Firstly, interested features were extracted from all sensory data collected, and then a symmetrical uncertainty analysis was applied to determine the predictive strength of individual sensor features. Thirdly, a candidate features subset was determined using a genetic based search. Finally, a back-propagation neural network model was adopted to fuse candidate multi-sensory features for estimation of occupancy levels. Several test cases were implemented to demonstrate and evaluate the effectiveness and feasibility of the proposed occupancy detection approach. Results have shown the potential of the proposed heterogeneous multi-sensor fusion based approach as an advanced strategy for the development of reliable occupancy detection systems in open-plan office buildings, which can be capable of facilitating improved control of building services. In summary, the proposed approach has the potential to: (1) Detect occupancy levels with an accuracy reaching 84.59% during occupied instances (2) capable of maintaining average occupancy detection accuracy of 61.01%, in the event of sensor failure or drop-off (such as CO2 sensors drop-off), (3) capable of utilising just sound and motion sensors for occupancy levels monitoring in a naturally ventilated space, (4) capable of facilitating potential daily energy savings reaching 53%, if implemented for occupancy-driven ventilation control

    A bottom-up framework for analysing city-scale energy data using high dimension reduction techniques

    Get PDF
    Worldwide cities are becoming more sustainable and are being monitored using data collection techniques at various geographical levels. Given the growing volume of data, there is a need to identify challenges associated with the processing, visualization, and analysis of the generated data from an urban scale. This study proposes a framework to investigate the capabilities of dimensionality reduction techniques (t-SNE, and UMAP) applied to city-scale data to identify key features of high consumption and generation areas based on building characteristics. The analysis is performed on measured data from 2735 postcodes consisting of 72000 households/buildings from a city in the Netherlands. The evaluation results showed that the UMAP's algorithm mean sigma quickly approaches a threshold of 0.6 at n_neighbor values of 50 and the low dimensional shape does not change with increasing values. Whereas the t-SNE's mean sigma value increases continuously with the increasing perplexity value, implying that t-SNE is significantly more sensitive to the perplexity parameter. The UMAP algorithm was used to extract information about the high photovoltaic generation and consumption regions. The proposed framework will assist grid operators and energy planners in extracting information from energy consumption data at the neighbourhood level by utilizing high dimensional reduction techniques
    • …
    corecore