9 research outputs found

    A new Gradient TD Algorithm with only One Step-size: Convergence Rate Analysis using LL-λ\lambda Smoothness

    Full text link
    Gradient Temporal Difference (GTD) algorithms (Sutton et al., 2008, 2009) are the first O(d)O(d) (dd is the number features) algorithms that have convergence guarantees for off-policy learning with linear function approximation. Liu et al. (2015) and Dalal et. al. (2018) proved the convergence rates of GTD, GTD2 and TDC are O(t−α/2)O(t^{-\alpha/2}) for some α∈(0,1)\alpha \in (0,1). This bound is tight (Dalal et al., 2020), and slower than O(1/t)O(1/\sqrt{t}). GTD algorithms also have two step-size parameters, which are difficult to tune. In literature, there is a "single-time-scale" formulation of GTD. However, this formulation still has two step-size parameters. This paper presents a truly single-time-scale GTD algorithm for minimizing the Norm of Expected td Update (NEU) objective, and it has only one step-size parameter. We prove that the new algorithm, called Impression GTD, converges at least as fast as O(1/t)O(1/t). Furthermore, based on a generalization of the expected smoothness (Gower et al. 2019), called LL-λ\lambda smoothness, we are able to prove that the new GTD converges even faster, in fact, with a linear rate. Our rate actually also improves Gower et al.'s result with a tighter bound under a weaker assumption. Besides Impression GTD, we also prove the rates of three other GTD algorithms, one by Yao and Liu (2008), another called A-transpose-TD (Sutton et al., 2008), and a counterpart of A-transpose-TD. The convergence rates of all the four GTD algorithms are proved in a single generic GTD framework to which LL-λ\lambda smoothness applies. Empirical results on Random walks, Boyan chain, and Baird counterexample show that Impression GTD converges much faster than existing GTD algorithms for both on-policy and off-policy learning problems, with well-performing step-sizes in a big range

    New Frameworks for Structured Policy Learning

    Get PDF
    Sequential decision making applications are playing an increasingly important role in everyday life. Research interest in machine learning approaches to sequential decision making has surged thanks to recent empirical successes of reinforcement learning and imitation learning techniques, partly fueled by recent advances in deep learning-based function approximation. However in many real-world sequential decision making applications, relying purely on black box policy learning is often insufficient, due to practical requirements of data efficiency, interpretability, safety guarantees, etc. These challenges collectively make it difficult for many existing policy learning methods to find success in realistic applications. In this dissertation, we present recent advances in structured policy learning, which are new machine learning frameworks that integrate policy learning with principled notions of domain knowledge, which spans value-based, policy-based, and model-based structures. Our framework takes flexible reduction-style approaches that can integrate structure with reinforcement learning, imitation learning and robust control techniques. In addition to methodological advances, we demonstrate several successful applications of the new policy learning frameworks.</p

    Predictive Techniques for Scene Understanding by using Deep Learning in Autonomous Driving

    Get PDF
    La conducción autónoma es considerada uno de los más grandes retos tecnológicos de la actualidad. Cuando los coches autónomos conquisten nuestras carreteras, los accidentes se reducirán notablemente, hasta casi desaparecer, ya que la tecnología estará testada y no incumplirá las normas de conducción, entre otros beneficios sociales y económicos. Uno de los aspectos más críticos a la hora de desarrollar un vehículo autónomo es percibir y entender la escena que le rodea. Esta tarea debe ser tan precisa y eficiente como sea posible para posteriormente predecir el futuro de esta misma y ayudar a la toma de decisiones. De esta forma, las acciones tomadas por el vehículo garantizarán tanto la seguridad del vehículo en sí mismo y sus ocupantes, como la de los obstáculos circundantes, tales como viandantes, otros vehículos o infraestructura de la carretera. En ese sentido, esta tesis doctoral se centra en el estudio y desarrollo de distintas técnicas predictivas para el entendimiento de la escena en el contexto de la conducción autónoma. Durante la tesis, se observa una incorporación progresiva de técnicas de aprendizaje profundo en los distintos algoritmos propuestos para mejorar el razonamiento sobre qué está ocurriendo en el escenario de tráfico, así como para modelar las complejas interacciones entre la información social (distintos participantes o agentes del escenario, tales como vehículos, ciclistas o peatones) y física (es decir, la información geométrica, semántica y topológica del mapa de alta definición) presente en la escena. La capa de percepción de un vehículo autónomo se divide modularmente en tres etapas: Detección, Seguimiento (Tracking), y Predicción. Para iniciar el estudio de las etapas de seguimiento y predicción, se propone un algoritmo de Multi-Object Tracking basado en técnicas clásicas de estimación de movimiento y asociación validado en el dataset KITTI, el cual obtiene métricas del estado del arte. Por otra parte, se propone el uso de un filtro inteligente basado en información contextual de mapa, cuyo objetivo es monitorizar los agentes más relevantes de la escena en el tiempo, representando estos agentes filtrados la entrada preliminar para realizar predicciones unimodales basadas en un modelo cinemático. Para validar esta propuesta de filtro inteligente se usa CARLA (CAR Learning to Act), uno de los simuladores hiperrealistas para conducción autónoma más prometedores en la actualidad, comprobando cómo al usar información contextual de mapa se puede reducir notablemente el tiempo de inferencia de un algoritmo de tracking y predicción basados en métodos físicos, prestando atención a los agentes realmente relevantes del escenario de tráfico. Tras observar las limitaciones de un modelo de predicción basado en cinemática para la predicción a largo plazo de un agente, los distintos algoritmos de la tesis se centran en el módulo de predicción, usando los datasets Argoverse 1 y Argoverse 2, donde se asume que los agentes proporcionados en cada escenario de tráfico ya están monitorizados durante un cierto número de observaciones. En primer lugar, se introduce un modelo basado en redes neuronales recurrentes (particularmente redes LSTM, Long-Short Term Memory) y mecanismo de atención para codificar las trayectorias pasadas de los agentes, y una representación simplificada del mapa en forma de posiciones finales potenciales en la carretera para calcular las trayectorias futuras unimodales, todo envuelto en un marco GAN (Generative Adversarial Network), obteniendo métricas similares al estado del arte en el caso unimodal. Una vez validado el modelo anterior en Argoverse 1, se proponen distintos modelos base (sólo social, incorporando mapa, y una mejora final basada en Transformer encoder, redes convolucionales 1D y mecanismo de atención cruzada para la fusión de características) precisos y eficientes basados en el modelo de predicción anterior, introduciendo dos nuevos conceptos. Por un lado, el uso de redes neuronales gráficas (particularmente GCN, Graph Convolutional Network) para codificar de una forma potente las interacciones de los agentes. Por otro lado, se propone el preprocesamiento de trayectorias preliminares a partir de un mapa con un método heurístico. Gracias a estas entradas y una arquitectura más potente de codificación, los modelos base serán capaces de predecir distintas trayectorias futuras multimodales, es decir, cubriendo distintos posibles futuros para el agente de interés. Los modelos base propuestos obtienen métricas de regresión del estado del arte tanto en el caso multimodal como unimodal manteniendo un claro compromiso de eficiencia con respecto a otras propuestas. El modelo final de la tesis, inspirado en los modelos anteriores y validado en el más reciente dataset para algoritmos de predicción en conducción autónoma (Argoverse 2), introduce varias mejoras para entender mejor el escenario de tráfico y decodificar la información de una forma precisa y eficiente. Se propone incorporar información topológica y semántica de los carriles futuros preliminares con el método heurístico antes mencionado, codificación de mapa basada en aprendizaje profundo con redes GCN, ciclo de fusión de características físicas y sociales, estimación de posiciones finales en la carretera y agregación de su entorno circundante con aprendizaje profundo y finalmente módulo de refinado para mejorar la calidad de las predicciones multimodales finales de un modo elegante y eficiente. Comparado con el estado del arte, nuestro método logra métricas de predicción a la par con los métodos mejor posicionados en el Leaderboard de Argoverse 2, reduciendo de forma notable el número de parámetros y operaciones de coma flotante por segundo. Por último, el modelo final de la tesis ha sido validado en simulación en distintas aplicaciones de conducción autónoma. En primer lugar, se integra el modelo para proporcionar predicciones a un algoritmo de toma de decisiones basado en aprendizaje por refuerzo en el simulador SMARTS (Scalable Multi-Agent Reinforcement Learning Training School), observando en los estudios como el vehículo es capaz de tomar mejores decisiones si conoce el comportamiento futuro de la escena y no solo el estado actual o pasado de esta misma. En segundo lugar, se ha realizado un estudio de adaptación de dominio exitoso en el simulador hiperrealista CARLA en distintos escenarios desafiantes donde el entendimiento de la escena y predicción del entorno son muy necesarios, como una autopista o rotonda con gran densidad de tráfico o la aparición de un usuario vulnerable de la carretera de forma repentina. En ese sentido, el modelo de predicción ha sido integrado junto con el resto de capas de la arquitectura de navegación autónoma del grupo de investigación donde se desarrolla la tesis como paso previo a su implementación en un vehículo autónomo real

    Putting artificial intelligence into wearable human-machine interfaces – towards a generic, self-improving controller

    Get PDF
    The standard approach to creating a machine learning based controller is to provide users with a number of gestures that they need to make; record multiple instances of each gesture using specific sensors; extract the relevant sensor data and pass it through a supervised learning algorithm until the algorithm can successfully identify the gestures; map each gesture to a control signal that performs a desired outcome. This approach is both inflexible and time consuming. The primary contribution of this research was to investigate a new approach to putting artificial intelligence into wearable human-machine interfaces by creating a Generic, Self-Improving Controller. It was shown to learn two user-defined static gestures with an accuracy of 100% in less than 10 samples per gesture; three in less than 20 samples per gesture; and four in less than 35 samples per gesture. Pre-defined dynamic gestures were more difficult to learn. It learnt two with an accuracy of 90% in less than 6,000 samples per gesture; and four with an accuracy of 70% after 50,000 samples per gesture. The research has resulted in a number of additional contributions: • The creation of a source-independent hardware data capture, processing, fusion and storage tool for standardising the capture and storage of historical copies of data captured from multiple different sensors. • An improved Attitude and Heading Reference System (AHRS) algorithm for calculating orientation quaternions that is five orders of magnitude more precise. • The reformulation of the regularised TD learning algorithm; the reformulation of the TD learning algorithm applied the artificial neural network back-propagation algorithm; and the combination of the reformulations into a new, regularised TD learning algorithm applied to the artificial neural network back-propagation algorithm. • The creation of a Generic, Self-Improving Predictor that can use different learning algorithms and a Flexible Artificial Neural Network.Open Acces

    Uncertainty in Artificial Intelligence: Proceedings of the Thirty-Fourth Conference

    Get PDF

    Inference, Computation, and Games

    Get PDF
    In this thesis, we use statistical inference and competitive games to design algorithms for computational mathematics. In the first part, comprising chapters two through six, we use ideas from Gaussian process statistics to obtain fast solvers for differential and integral equations. We begin by observing the equivalence of conditional (near-)independence of Gaussian processes and the (near-)sparsity of the Cholesky factors of its precision and covariance matrices. This implies the existence of a large class of dense matrices with almost sparse Cholesky factors, thereby greatly increasing the scope of application of sparse Cholesky factorization. Using an elimination ordering and sparsity pattern motivated by the screening effect in spatial statistics, we can compute approximate Cholesky factors of the covariance matrices of Gaussian processes admitting a screening effect in near-linear computational complexity. These include many popular smoothness priors such as the Matérn class of covariance functions. In the special case of Green's matrices of elliptic boundary value problems (with possibly unknown elliptic operators of arbitrarily high order, with possibly rough coefficients), we can use tools from numerical homogenization to prove the exponential accuracy of our method. This result improves the state-of-the-art for solving general elliptic integral equations and provides the first proof of an exponential screening effect. We also derive a fast solver for elliptic partial differential equations, with accuracy-vs-complexity guarantees that improve upon the state-of-the-art. Furthermore, the resulting solver is performant in practice, frequently beating established algebraic multigrid libraries such as AMGCL and Trilinos on a series of challenging problems in two and three dimensions. Finally, for any given covariance matrix, we obtain a closed-form expression for its optimal (in terms of Kullback-Leibler divergence) approximate inverse-Cholesky factorization subject to a sparsity constraint, recovering Vecchia approximation and factorized sparse approximate inverses. Our method is highly robust, embarrassingly parallel, and further improves our asymptotic results on the solution of elliptic integral equations. We also provide a way to apply our techniques to sums of independent Gaussian processes, resolving a major limitation of existing methods based on the screening effect. As a result, we obtain fast algorithms for large-scale Gaussian process regression problems with possibly noisy measurements. In the second part of this thesis, comprising chapters seven through nine, we study continuous optimization through the lens of competitive games. In particular, we consider competitive optimization, where multiple agents attempt to minimize conflicting objectives. In the single-agent case, the updates of gradient descent are minimizers of quadratically regularized linearizations of the loss function. We propose to generalize this idea by using the Nash equilibria of quadratically regularized linearizations of the competitive game as updates (linearize the game). We provide fundamental reasons why the natural notion of linearization for competitive optimization problems is given by the multilinear (as opposed to linear) approximation of the agents' loss functions. The resulting algorithm, which we call competitive gradient descent, thus provides a natural generalization of gradient descent to competitive optimization. By using ideas from information geometry, we extend CGD to competitive mirror descent (CMD) that can be applied to a vast range of constrained competitive optimization problems. CGD and CMD resolve the cycling problem of simultaneous gradient descent and show promising results on problems arising in constrained optimization, robust control theory, and generative adversarial networks. Finally, we point out the GAN-dilemma that refutes the common interpretation of GANs as approximate minimizers of a divergence obtained in the limit of a fully trained discriminator. Instead, we argue that GAN performance relies on the implicit competitive regularization (ICR) due to the simultaneous optimization of generator and discriminator and support this hypothesis with results on low-dimensional model problems and GANs on CIFAR10.</p

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum
    corecore