2,681 research outputs found

    Spatial-Aware Object Embeddings for Zero-Shot Localization and Classification of Actions

    Get PDF
    We aim for zero-shot localization and classification of human actions in video. Where traditional approaches rely on global attribute or object classification scores for their zero-shot knowledge transfer, our main contribution is a spatial-aware object embedding. To arrive at spatial awareness, we build our embedding on top of freely available actor and object detectors. Relevance of objects is determined in a word embedding space and further enforced with estimated spatial preferences. Besides local object awareness, we also embed global object awareness into our embedding to maximize actor and object interaction. Finally, we exploit the object positions and sizes in the spatial-aware embedding to demonstrate a new spatio-temporal action retrieval scenario with composite queries. Action localization and classification experiments on four contemporary action video datasets support our proposal. Apart from state-of-the-art results in the zero-shot localization and classification settings, our spatial-aware embedding is even competitive with recent supervised action localization alternatives.Comment: ICC

    CycleACR: Cycle Modeling of Actor-Context Relations for Video Action Detection

    Full text link
    The relation modeling between actors and scene context advances video action detection where the correlation of multiple actors makes their action recognition challenging. Existing studies model each actor and scene relation to improve action recognition. However, the scene variations and background interference limit the effectiveness of this relation modeling. In this paper, we propose to select actor-related scene context, rather than directly leverage raw video scenario, to improve relation modeling. We develop a Cycle Actor-Context Relation network (CycleACR) where there is a symmetric graph that models the actor and context relations in a bidirectional form. Our CycleACR consists of the Actor-to-Context Reorganization (A2C-R) that collects actor features for context feature reorganizations, and the Context-to-Actor Enhancement (C2A-E) that dynamically utilizes reorganized context features for actor feature enhancement. Compared to existing designs that focus on C2A-E, our CycleACR introduces A2C-R for a more effective relation modeling. This modeling advances our CycleACR to achieve state-of-the-art performance on two popular action detection datasets (i.e., AVA and UCF101-24). We also provide ablation studies and visualizations as well to show how our cycle actor-context relation modeling improves video action detection. Code is available at https://github.com/MCG-NJU/CycleACR.Comment: technical repor
    • …
    corecore