6,495 research outputs found

    Sensor-based datasets for human activity recognition - a systematic review of literature

    Get PDF
    The research area of ambient assisted living has led to the development of activity recognition systems (ARS) based on human activity recognition (HAR). These systems improve the quality of life and the health care of the elderly and dependent people. However, before making them available to end users, it is necessary to evaluate their performance in recognizing activities of daily living, using data set benchmarks in experimental scenarios. For that reason, the scientific community has developed and provided a huge amount of data sets for HAR. Therefore, identifying which ones to use in the evaluation process and which techniques are the most appropriate for prediction of HAR in a specific context is not a trivial task and is key to further progress in this area of research. This work presents a systematic review of the literature of the sensor-based data sets used to evaluate ARS. On the one hand, an analysis of different variables taken from indexed publications related to this field was performed. The sources of information are journals, proceedings, and books located in specialized databases. The analyzed variables characterize publications by year, database, type, quartile, country of origin, and destination, using scientometrics, which allowed identification of the data set most used by researchers. On the other hand, the descriptive and functional variables were analyzed for each of the identified data sets: occupation, annotation, approach, segmentation, representation, feature selection, balancing and addition of instances, and classifier used for recognition. This paper provides an analysis of the sensor-based data sets used in HAR to date, identifying the most appropriate dataset to evaluate ARS and the classification techniques that generate better results

    Sensor-based datasets for human activity recognition - a systematic review of literature

    Get PDF
    The research area of ambient assisted living has led to the development of activity recognition systems (ARS) based on human activity recognition (HAR). These systems improve the quality of life and the health care of the elderly and dependent people. However, before making them available to end users, it is necessary to evaluate their performance in recognizing activities of daily living, using data set benchmarks in experimental scenarios. For that reason, the scientific community has developed and provided a huge amount of data sets for HAR. Therefore, identifying which ones to use in the evaluation process and which techniques are the most appropriate for prediction of HAR in a specific context is not a trivial task and is key to further progress in this area of research. This work presents a systematic review of the literature of the sensor-based data sets used to evaluate ARS. On the one hand, an analysis of different variables taken from indexed publications related to this field was performed. The sources of information are journals, proceedings, and books located in specialized databases. The analyzed variables characterize publications by year, database, type, quartile, country of origin, and destination, using scientometrics, which allowed identification of the data set most used by researchers. On the other hand, the descriptive and functional variables were analyzed for each of the identified data sets: occupation, annotation, approach, segmentation, representation, feature selection, balancing and addition of instances, and classifier used for recognition. This paper provides an analysis of the sensor-based data sets used in HAR to date, identifying the most appropriate dataset to evaluate ARS and the classification techniques that generate better results

    Exploring The Responsibilities Of Single-Inhabitant Smart Homes With Use Cases

    Get PDF
    DOI: 10.3233/AIS-2010-0076This paper makes a number of contributions to the field of requirements analysis for Smart Homes. It introduces Use Cases as a tool for exploring the responsibilities of Smart Homes and it proposes a modification of the conventional Use Case structure to suit the particular requirements of Smart Homes. It presents a taxonomy of Smart-Home-related Use Cases with seven categories. It draws on those Use Cases as raw material for developing questions and conclusions about the design of Smart Homes for single elderly inhabitants, and it introduces the SHMUC repository, a web-based repository of Use Cases related to Smart Homes that anyone can exploit and to which anyone may contribute

    Discovering activity patterns in office environment using a network of low-resolution visual sensors

    No full text
    Understanding activity patterns in office environments is important in order to increase workers’ comfort and productivity. This paper proposes an automated system for discovering activity patterns of multiple persons in a work environment using a network of cheap low-resolution visual sensors (900 pixels). Firstly, the users’ locations are obtained from a robust people tracker based on recursive maximum likelihood principles. Secondly, based on the users’ mobility tracks, the high density positions are found using a bivariate kernel density estimation. Then, the hotspots are detected using a confidence region estimation. Thirdly, we analyze the individual’s tracks to find the starting and ending hotspots. The starting and ending hotspots form an observation sequence, where the user’s presence and absence are detected using three powerful Probabilistic Graphical Models (PGMs). We describe two approaches to identify the user’s status: a single model approach and a two-model mining approach. We evaluate both approaches on video sequences captured in a real work environment, where the persons’ daily routines are recorded over 5 months. We show how the second approach achieves a better performance than the first approach. Routines dominating the entire group’s activities are identified with a methodology based on the Latent Dirichlet Allocation topic model. We also detect routines which are characteristic of persons. More specifically, we perform various analysis to determine regions with high variations, which may correspond to specific events

    Activities of daily life recognition using process representation modelling to support intention analysis

    Get PDF
    Purpose – This paper aims to focus on applying a range of traditional classification- and semantic reasoning-based techniques to recognise activities of daily life (ADLs). ADL recognition plays an important role in tracking functional decline among elderly people who suffer from Alzheimer’s disease. Accurate recognition enables smart environments to support and assist the elderly to lead an independent life for as long as possible. However, the ability to represent the complex structure of an ADL in a flexible manner remains a challenge. Design/methodology/approach – This paper presents an ADL recognition approach, which uses a hierarchical structure for the representation and modelling of the activities, its associated tasks and their relationships. This study describes an approach in constructing ADLs based on a task-specific and intention-oriented plan representation language called Asbru. The proposed method is particularly flexible and adaptable for caregivers to be able to model daily schedules for Alzheimer’s patients. Findings – A proof of concept prototype evaluation has been conducted for the validation of the proposed ADL recognition engine, which has comparable recognition results with existing ADL recognition approaches. Originality/value – The work presented in this paper is novel, as the developed ADL recognition approach takes into account all relationships and dependencies within the modelled ADLs. This is very useful when conducting activity recognition with very limited features

    A multilabel classification approach for complex human activities using a combination of emerging patterns and fuzzy sets

    Get PDF
    In our daily lives, humans perform different Activities of Daily Living (ADL), such as cooking, and studying. According to the nature of humans, they perform these activities in a sequential/simple or an overlapping/complex scenario. Many research attempts addressed simple activity recognition, but complex activity recognition is still a challenging issue. Recognition of complex activities is a multilabel classification problem, such that a test instance is assigned to a multiple overlapping activities. Existing data-driven techniques for complex activity recognition can recognize a maximum number of two overlapping activities and require a training dataset of complex (i.e. multilabel) activities. In this paper, we propose a multilabel classification approach for complex activity recognition using a combination of Emerging Patterns and Fuzzy Sets. In our approach, we require a training dataset of only simple (i.e. single-label) activities. First, we use a pattern mining technique to extract discriminative features called Strong Jumping Emerging Patterns (SJEPs) that exclusively represent each activity. Then, our scoring function takes SJEPs and fuzzy membership values of incoming sensor data and outputs the activity label(s). We validate our approach using two different dataset. Experimental results demonstrate the efficiency and superiority of our approach against other approaches

    Context-awareness for mobile sensing: a survey and future directions

    Get PDF
    The evolution of smartphones together with increasing computational power have empowered developers to create innovative context-aware applications for recognizing user related social and cognitive activities in any situation and at any location. The existence and awareness of the context provides the capability of being conscious of physical environments or situations around mobile device users. This allows network services to respond proactively and intelligently based on such awareness. The key idea behind context-aware applications is to encourage users to collect, analyze and share local sensory knowledge in the purpose for a large scale community use by creating a smart network. The desired network is capable of making autonomous logical decisions to actuate environmental objects, and also assist individuals. However, many open challenges remain, which are mostly arisen due to the middleware services provided in mobile devices have limited resources in terms of power, memory and bandwidth. Thus, it becomes critically important to study how the drawbacks can be elaborated and resolved, and at the same time better understand the opportunities for the research community to contribute to the context-awareness. To this end, this paper surveys the literature over the period of 1991-2014 from the emerging concepts to applications of context-awareness in mobile platforms by providing up-to-date research and future research directions. Moreover, it points out the challenges faced in this regard and enlighten them by proposing possible solutions
    • …
    corecore