102,004 research outputs found

    CAVIAR: Context-driven Active and Incremental Activity Recognition

    Get PDF
    Activity recognition on mobile device sensor data has been an active research area in mobile and pervasive computing for several years. While the majority of the proposed techniques are based on supervised learning, semi-supervised approaches are being considered to reduce the size of the training set required to initialize the model. These approaches usually apply self-training or active learning to incrementally refine the model, but their effectiveness seems to be limited to a restricted set of physical activities. We claim that the context which surrounds the user (e.g., time, location, proximity to transportation routes) combined with common knowledge about the relationship between context and human activities could be effective in significantly increasing the set of recognized activities including those that are difficult to discriminate only considering inertial sensors, and the highly context-dependent ones. In this paper, we propose CAVIAR, a novel hybrid semi-supervised and knowledge-based system for real-time activity recognition. Our method applies semantic reasoning on context-data to refine the predictions of an incremental classifier. The recognition model is continuously updated using active learning. Results on a real dataset obtained from 26 subjects show the effectiveness of our approach in increasing the recognition rate, extending the number of recognizable activities and, most importantly, reducing the number of queries triggered by active learning. In order to evaluate the impact of context reasoning, we also compare CAVIAR with a purely statistical version, considering features computed on context-data as part of the machine learning process

    Temporal Feature Alignment in Contrastive Self-Supervised Learning for Human Activity Recognition

    Full text link
    Automated Human Activity Recognition has long been a problem of great interest in human-centered and ubiquitous computing. In the last years, a plethora of supervised learning algorithms based on deep neural networks has been suggested to address this problem using various modalities. While every modality has its own limitations, there is one common challenge. Namely, supervised learning requires vast amounts of annotated data which is practically hard to collect. In this paper, we benefit from the self-supervised learning paradigm (SSL) that is typically used to learn deep feature representations from unlabeled data. Moreover, we upgrade a contrastive SSL framework, namely SimCLR, widely used in various applications by introducing a temporal feature alignment procedure for Human Activity Recognition. Specifically, we propose integrating a dynamic time warping (DTW) algorithm in a latent space to force features to be aligned in a temporal dimension. Extensive experiments have been conducted for the unimodal scenario with inertial modality as well as in multimodal settings using inertial and skeleton data. According to the obtained results, the proposed approach has a great potential in learning robust feature representations compared to the recent SSL baselines, and clearly outperforms supervised models in semi-supervised learning. The code for the unimodal case is available via the following link: https://github.com/bulatkh/csshar_tfa.Comment: Accepted to IJCB 202

    Negative Selection by Clustering for Contrastive Learning in Human Activity Recognition

    Get PDF
    Contrastive learning has been applied to Human Activity Recognition (HAR) based on sensor data owing to its ability to achieve performance comparable to supervised learning with a large amount of unlabeled data and a small amount of labeled data. The pre-training task for contrastive learning is generally instance discrimination, which specifies that each instance belongs to a single class, but this will consider the same class of samples as negative examples. Such a pre-training task is not conducive to human activity recognition tasks, which are mainly classification tasks. To address this problem, we follow SimCLR to propose a new contrastive learning framework that negative selection by clustering in HAR, which is called ClusterCLHAR. Compared with SimCLR, it redefines the negative pairs in the contrastive loss function by using unsupervised clustering methods to generate soft labels that mask other samples of the same cluster to avoid regarding them as negative samples. We evaluate ClusterCLHAR on three benchmark datasets, USC-HAD, MotionSense, and UCI-HAR, using mean F1-score as the evaluation metric. The experiment results show that it outperforms all the state-of-the-art methods applied to HAR in self-supervised learning and semi-supervised learning.Comment: 11 pages, 5 figure

    Machine Learning Based Physical Activity Extraction for Unannotated Acceleration Data

    Get PDF
    Sensor based human activity recognition (HAR) is an emerging and challenging research area. The physical activity of people has been associated with many health benefits and even reducing the risk of different diseases. It is possible to collect sensor data related to physical activities of people with wearable devices and embedded sensors, for example in smartphones and smart environments. HAR has been successful in recognizing physical activities with machine learning methods. However, it is a critical challenge to annotate sensor data in HAR. Most existing approaches use supervised machine learning methods which means that true labels need be given to the data when training a machine learning model. Supervised deep learning methods have outperformed traditional machine learning methods in HAR but they require an even more extensive amount of data and true labels. In this thesis, machine learning methods are used to develop a solution that can recognize physical activity (e.g., walking and sedentary time) from unannotated acceleration data collected using a wearable accelerometer device. It is shown to be beneficial to collect and annotate data from physical activity of only one person. Supervised classifiers can be trained with small, labeled acceleration data and more training data can be obtained in a semi-supervised setting by leveraging knowledge from available unannotated data. The semi-supervised En-Co-Training method is used with the traditional supervised machine learning methods K-nearest Neighbor and Random Forest. Also, intensities of activities are produced by the cut point analysis of the OMGUI software as reference information and used to increase confidence of correctly selecting pseudo-labels that are added to the training data. A new metric is suggested to help to evaluate reliability when no true labels are available. It calculates a fraction of predictions that have a correct intensity out of all the predictions according to the cut point analysis of the OMGUI software. The reliability of the supervised KNN and RF classifiers reaches 88 % accuracy and the C-index value 0,93, while the accuracy of the K-means clustering remains 72 % when testing the models on labeled acceleration data. The initial supervised classifiers and the classifiers retrained in a semi-supervised setting are tested on unlabeled data collected from 12 people and measured with the new metric. The overall results improve from 96-98 % to 98-99 %. The results with more challenging activities to the initial classifiers, taking a walk improve from 55-81 % to 67-81 % and jogging from 0-95 % to 95-98 %. It is shown that the results of the KNN and RF classifiers consistently increase in the semi-supervised setting when tested on unannotated, real-life data of 12 people

    ProCAVIAR: Hybrid Data-Driven and Probabilistic Knowledge-Based Activity Recognition

    Get PDF
    The recognition of physical activities using sensors on mobile devices has been mainly addressed with supervised and semi-supervised learning. The state-of-the-art methods are mainly based on the analysis of the user\u2019s movement patterns that emerge from inertial sensors data. While the literature on this topic is quite mature, existing approaches are still not adequate to discriminate activities characterized by similar physical movements. The context that surrounds the user (e.g., semantic location) could be used as additional information to significantly extend the set of recognizable activities. Since collecting a comprehensive training set with activities performed in every possible context condition is too costly, if possible at all, existing works proposed knowledge-based reasoning over ontological representation of context data to refine the predictions obtained from machine learning. A problem with this approach is the rigidity of the underlying logic formalism that cannot capture the intrinsic uncertainty of the relationships between activities and context. In this work, we propose a novel activity recognition method that combines semisupervised learning and probabilistic ontological reasoning. We model the relationships between activities and context as a combination of soft and hard ontological axioms. For each activity, we use a probabilistic ontology to compute its compatibility with the current context conditions. The output of probabilistic semantic reasoning is combined with the output of a machine learning classifier based on inertial sensor data to obtain the most likely activity performed by the user. The evaluation of our system on a dataset with 13 types of activities performed by 26 subjects shows that our probabilistic framework outperforms both a pure machine learning approach and previous hybrid approaches based on classic ontological reasoning

    Human Activity Annotation based on Active Learning

    Get PDF
    Human activity recognition algorithms have been increasingly sought due to their broad application, in areas such as healthcare, safety and sports. Current works focusing on human activity recognition are based majorly on Supervised Learning algorithms and have achieved promising results. However, high performance is achieved at the cost of a large amount of labelled data required to train and learn the model parameters, where a high volume of data will increase the algorithm’s performance and the classifier’s ability to generalise correctly into new, and previously unseen data. Commonly, the labelling process of ground truth data, which is required for supervised algorithms, must be done manually by the user, being tedious, time-consuming and difficult. On this account, we propose a Semi-Supervised Active Learning technique able to partly automate the labelling process and reduce considerably the labelling cost and the labelled data volume required to obtain a highly performing classifier. This is achieved through the selection of the most relevant samples for annotation and propagation of their label to similar samples. In order to accomplish this task, several sample selection strategies were tested in order to find the most valuable sample for labelling to be included in the classifier’s training set and create a representative set of the entire dataset. Followed by a semi-supervised stage, labelling with high confidence unlabelled samples, and augmenting the training set without any extra labelling effort from the user. Lastly, five stopping criteria were tested, optimising the trade-off between the classifier’s performance and the percentage of labelled data in its training set. Experimental results were performed on two different datasets with real data, allowing to validate the proposed method and compare it to literature methods, which were replicated. The developed model was able to reach similar accuracy values as supervised learning, with a reduction in the required labelled data of more than 89% for the two datasets, respectively

    CapMatch: Semi-Supervised Contrastive Transformer Capsule With Feature-Based Knowledge Distillation for Human Activity Recognition

    Get PDF
    This article proposes a semi-supervised contrastive capsule transformer method with feature-based knowledge distillation (KD) that simplifies the existing semisupervised learning (SSL) techniques for wearable human activity recognition (HAR), called CapMatch. CapMatch gracefully hybridizes supervised learning and unsupervised learning to extract rich representations from input data. In unsupervised learning, CapMatch leverages the pseudolabeling, contrastive learning (CL), and feature-based KD techniques to construct similarity learning on lower and higher level semantic information extracted from two augmentation versions of the data“, weak” and “timecut”, to recognize the relationships among the obtained features of classes in the unlabeled data. CapMatch combines the outputs of the weak-and timecut-augmented models to form pseudolabeling and thus CL. Meanwhile, CapMatch uses the feature-based KD to transfer knowledge from the intermediate layers of the weak-augmented model to those of the timecut-augmented model. To effectively capture both local and global patterns of HAR data, we design a capsule transformer network consisting of four capsule-based transformer blocks and one routing layer. Experimental results show that compared with a number of state-of-the-art semi-supervised and supervised algorithms, the proposed CapMatch achieves decent performance on three commonly used HAR datasets, namely, HAPT, WISDM, and UCI_HAR. With only 10% of data labeled, CapMatch achieves F1 values of higher than 85.00% on these datasets, outperforming 14 semi-supervised algorithms. When the proportion of labeled data reaches 30%, CapMatch obtains F1 values of no lower than 88.00% on the datasets above, which is better than several classical supervised algorithms, e.g., decision tree and k -nearest neighbor (KNN)
    • …
    corecore