390 research outputs found

    Activity Recognition and Abnormal Behaviour Detection with Recurrent Neural Networks

    Get PDF
    In this paper, we study the problem of activity recognition and abnormal behaviour detection for elderly people with dementia. Very few studies have attempted to address this problem presumably because of the lack of experimental data in the context of dementia care. In particular, the paper investigates three variants of Recurrent Neural Networks (RNNs): Vanilla RNNs (VRNN), Long Short Term RNNs (LSTM) and Gated Recurrent Unit RNNs (GRU). Here activity recognition is considered as a sequence labelling problem, while abnormal behaviour is flagged based on the deviation from normal patterns. To provide an adequate discussion of the performance of RNNs in this context, we compare them against the state-of-art methods such as Support Vector Machines (SVMs), Na¨ıve Bayes (NB), Hidden Markov Models (HMMs), Hidden Semi-Markov Models (HSMM) and Conditional Random Fields (CRFs). The results obtained indicate that RNNs are competitive with those state-of-art methods. Moreover, the paper presents a methodology for generating synthetic data reflecting on some behaviours of people with dementia given the difficulty of obtaining real-world data

    Development of a simulation tool for measurements and analysis of simulated and real data to identify ADLs and behavioral trends through statistics techniques and ML algorithms

    Get PDF
    openCon una popolazione di anziani in crescita, il numero di soggetti a rischio di patologia è in rapido aumento. Molti gruppi di ricerca stanno studiando soluzioni pervasive per monitorare continuamente e discretamente i soggetti fragili nelle loro case, riducendo i costi sanitari e supportando la diagnosi medica. Comportamenti anomali durante l'esecuzione di attività di vita quotidiana (ADL) o variazioni sulle tendenze comportamentali sono di grande importanza.With a growing population of elderly people, the number of subjects at risk of pathology is rapidly increasing. Many research groups are studying pervasive solutions to continuously and unobtrusively monitor fragile subjects in their homes, reducing health-care costs and supporting the medical diagnosis. Anomalous behaviors while performing activities of daily living (ADLs) or variations on behavioral trends are of great importance. To measure ADLs a significant number of parameters need to be considering affecting the measurement such as sensors and environment characteristics or sensors disposition. To face the impossibility to study in the real context the best configuration of sensors able to minimize costs and maximize accuracy, simulation tools are being developed as powerful means. This thesis presents several contributions on this topic. In the following research work, a study of a measurement chain aimed to measure ADLs and represented by PIRs sensors and ML algorithm is conducted and a simulation tool in form of Web Application has been developed to generate datasets and to simulate how the measurement chain reacts varying the configuration of the sensors. Starting from eWare project results, the simulation tool has been thought to provide support for technicians, developers and installers being able to speed up analysis and monitoring times, to allow rapid identification of changes in behavioral trends, to guarantee system performance monitoring and to study the best configuration of the sensors network for a given environment. The UNIVPM Home Care Web App offers the chance to create ad hoc datasets related to ADLs and to conduct analysis thanks to statistical algorithms applied on data. To measure ADLs, machine learning algorithms have been implemented in the tool. Five different tasks have been identified. To test the validity of the developed instrument six case studies divided into two categories have been considered. To the first category belong those studies related to: 1) discover the best configuration of the sensors keeping environmental characteristics and user behavior as constants; 2) define the most performant ML algorithms. The second category aims to proof the stability of the algorithm implemented and its collapse condition by varying user habits. Noise perturbation on data has been applied to all case studies. Results show the validity of the generated datasets. By maximizing the sensors network is it possible to minimize the ML error to 0.8%. Due to cost is a key factor in this scenario, the fourth case studied considered has shown that minimizing the configuration of the sensors it is possible to reduce drastically the cost with a more than reasonable value for the ML error around 11.8%. Results in ADLs measurement can be considered more than satisfactory.INGEGNERIA INDUSTRIALEopenPirozzi, Michel

    Discovering human activities from binary data in smart homes

    Get PDF
    With the rapid development in sensing technology, data mining, and machine learning fields for human health monitoring, it became possible to enable monitoring of personal motion and vital signs in a manner that minimizes the disruption of an individual’s daily routine and assist individuals with difficulties to live independently at home. A primary difficulty that researchers confront is acquiring an adequate amount of labeled data for model training and validation purposes. Therefore, activity discovery handles the problem that activity labels are not available using approaches based on sequence mining and clustering. In this paper, we introduce an unsupervised method for discovering activities from a network of motion detectors in a smart home setting. First, we present an intra-day clustering algorithm to find frequent sequential patterns within a day. As a second step, we present an inter-day clustering algorithm to find the common frequent patterns between days. Furthermore, we refine the patterns to have more compressed and defined cluster characterizations. Finally, we track the occurrences of various regular routines to monitor the functional health in an individual’s patterns and lifestyle. We evaluate our methods on two public data sets captured in real-life settings from two apartments during seven-month and three-month periods

    Data Mining in Internet of Things Systems: A Literature Review

    Get PDF
    The Internet of Things (IoT) and cloud technologies have been the main focus of recent research, allowing for the accumulation of a vast amount of data generated from this diverse environment. These data include without any doubt priceless knowledge if could correctly discovered and correlated in an efficient manner. Data mining algorithms can be applied to the Internet of Things (IoT) to extract hidden information from the massive amounts of data that are generated by IoT and are thought to have high business value. In this paper, the most important data mining approaches covering classification, clustering, association analysis, time series analysis, and outlier analysis from the knowledge will be covered. Additionally, a survey of recent work in in this direction is included. Another significant challenges in the field are collecting, storing, and managing the large number of devices along with their associated features. In this paper, a deep look on the data mining for the IoT platforms will be given concentrating on real applications found in the literatur

    Abnormal Behaviour Detection for Dementia Sufferers via Transfer Learning and Recursive Auto-Encoders

    Get PDF
    —Cognitive impairment is one of the crucial problems elderly people face. Tracking their daily life activities and detecting early indicators of cognitive decline would be necessary for further diagnosis. Depending on the decline magnitude, monitoring may need to be done over long periods of time to detect abnormal behaviour. In the absence of training data, it would be helpful to learn the normal behaviour and daily life patterns of a (cognitively) healthy person and use them as a basis for tracking other patients. In this paper, we propose to investigate Recursive Auto-Encoders (RAE)-based transfer learning to cope with the problem of scarcity of data in the context of abnormal behaviour detection. We present a method for generating synthetic data to reflect on some behavior of people with dementia. An RAE model is trained on data of a healthy person in a source household. Then, the resulting RAE is used to detect abnormal behavior in a target house. To evaluate the proposed approach, we compare the results with the-state-ofthe-art supervised methods. The results indicate that transfer learning is promising when there is lack of training data

    Progress in ambient assisted systems for independent living by the elderly

    Get PDF
    One of the challenges of the ageing population in many countries is the efficient delivery of health and care services, which is further complicated by the increase in neurological conditions among the elderly due to rising life expectancy. Personal care of the elderly is of concern to their relatives, in case they are alone in their homes and unforeseen circumstances occur, affecting their wellbeing. The alternative; i.e. care in nursing homes or hospitals is costly and increases further if specialized care is mobilized to patients’ place of residence. Enabling technologies for independent living by the elderly such as the ambient assisted living systems (AALS) are seen as essential to enhancing care in a cost-effective manner. In light of significant advances in telecommunication, computing and sensor miniaturization, as well as the ubiquity of mobile and connected devices embodying the concept of the Internet of Things (IoT), end-to-end solutions for ambient assisted living have become a reality. The premise of such applications is the continuous and most often real-time monitoring of the environment and occupant behavior using an event-driven intelligent system, thereby providing a facility for monitoring and assessment, and triggering assistance as and when needed. As a growing area of research, it is essential to investigate the approaches for developing AALS in literature to identify current practices and directions for future research. This paper is, therefore, aimed at a comprehensive and critical review of the frameworks and sensor systems used in various ambient assisted living systems, as well as their objectives and relationships with care and clinical systems. Findings from our work suggest that most frameworks focused on activity monitoring for assessing immediate risks while the opportunities for integrating environmental factors for analytics and decision-making, in particular for the long-term care were often overlooked. The potential for wearable devices and sensors, as well as distributed storage and access (e.g. cloud) are yet to be fully appreciated. There is a distinct lack of strong supporting clinical evidence from the implemented technologies. Socio-cultural aspects such as divergence among groups, acceptability and usability of AALS were also overlooked. Future systems need to look into the issues of privacy and cyber security

    Sensor-based datasets for human activity recognition - a systematic review of literature

    Get PDF
    The research area of ambient assisted living has led to the development of activity recognition systems (ARS) based on human activity recognition (HAR). These systems improve the quality of life and the health care of the elderly and dependent people. However, before making them available to end users, it is necessary to evaluate their performance in recognizing activities of daily living, using data set benchmarks in experimental scenarios. For that reason, the scientific community has developed and provided a huge amount of data sets for HAR. Therefore, identifying which ones to use in the evaluation process and which techniques are the most appropriate for prediction of HAR in a specific context is not a trivial task and is key to further progress in this area of research. This work presents a systematic review of the literature of the sensor-based data sets used to evaluate ARS. On the one hand, an analysis of different variables taken from indexed publications related to this field was performed. The sources of information are journals, proceedings, and books located in specialized databases. The analyzed variables characterize publications by year, database, type, quartile, country of origin, and destination, using scientometrics, which allowed identification of the data set most used by researchers. On the other hand, the descriptive and functional variables were analyzed for each of the identified data sets: occupation, annotation, approach, segmentation, representation, feature selection, balancing and addition of instances, and classifier used for recognition. This paper provides an analysis of the sensor-based data sets used in HAR to date, identifying the most appropriate dataset to evaluate ARS and the classification techniques that generate better results

    Sensor-based datasets for human activity recognition - a systematic review of literature

    Get PDF
    The research area of ambient assisted living has led to the development of activity recognition systems (ARS) based on human activity recognition (HAR). These systems improve the quality of life and the health care of the elderly and dependent people. However, before making them available to end users, it is necessary to evaluate their performance in recognizing activities of daily living, using data set benchmarks in experimental scenarios. For that reason, the scientific community has developed and provided a huge amount of data sets for HAR. Therefore, identifying which ones to use in the evaluation process and which techniques are the most appropriate for prediction of HAR in a specific context is not a trivial task and is key to further progress in this area of research. This work presents a systematic review of the literature of the sensor-based data sets used to evaluate ARS. On the one hand, an analysis of different variables taken from indexed publications related to this field was performed. The sources of information are journals, proceedings, and books located in specialized databases. The analyzed variables characterize publications by year, database, type, quartile, country of origin, and destination, using scientometrics, which allowed identification of the data set most used by researchers. On the other hand, the descriptive and functional variables were analyzed for each of the identified data sets: occupation, annotation, approach, segmentation, representation, feature selection, balancing and addition of instances, and classifier used for recognition. This paper provides an analysis of the sensor-based data sets used in HAR to date, identifying the most appropriate dataset to evaluate ARS and the classification techniques that generate better results

    Detection of abnormal behaviour for dementia sufferers using Convolutional Neural Networks.

    Get PDF
    In recent years, there is a rapid increase in the population of elderly people. However, elderly people may suffer from the consequences of cognitive decline, which is a mental health disorder that primarily affects cognitive abilities such as learning, memory, etc. As a result, the elderly people may get dependent on caregivers to complete daily life tasks. Detecting the early indicators of dementia before it gets worsen and warning the caregivers and medical doctors would be helpful for further diagnosis. In this paper, the problem of activity recognition and abnormal behaviour detection is investigated for elderly people with dementia. First of all, the paper presents a methodology for generating synthetic data reflecting on some behavioural difficulties of people with dementia given the difficulty of obtaining real-world data. Secondly, the paper explores Convolutional Neural Networks (CNNs) to model patterns in activity sequences and detect abnormal behaviour related to dementia. Activity recognition is considered as a sequence labelling problem, while abnormal behaviour is flagged based on the deviation from normal patterns. Moreover, the performance of CNNs is compared against the state-of-art methods such as Naïve Bayes (NB), Hidden Markov Models (HMMs), Hidden Semi-Markov Models (HSMM), Conditional Random Fields (CRFs). The results obtained indicate that CNNs are competitive with those state-of-art methods
    • …
    corecore