6 research outputs found

    Eyewear Computing \u2013 Augmenting the Human with Head-Mounted Wearable Assistants

    Get PDF
    The seminar was composed of workshops and tutorials on head-mounted eye tracking, egocentric vision, optics, and head-mounted displays. The seminar welcomed 30 academic and industry researchers from Europe, the US, and Asia with a diverse background, including wearable and ubiquitous computing, computer vision, developmental psychology, optics, and human-computer interaction. In contrast to several previous Dagstuhl seminars, we used an ignite talk format to reduce the time of talks to one half-day and to leave the rest of the week for hands-on sessions, group work, general discussions, and socialising. The key results of this seminar are 1) the identification of key research challenges and summaries of breakout groups on multimodal eyewear computing, egocentric vision, security and privacy issues, skill augmentation and task guidance, eyewear computing for gaming, as well as prototyping of VR applications, 2) a list of datasets and research tools for eyewear computing, 3) three small-scale datasets recorded during the seminar, 4) an article in ACM Interactions entitled \u201cEyewear Computers for Human-Computer Interaction\u201d, as well as 5) two follow-up workshops on \u201cEgocentric Perception, Interaction, and Computing\u201d at the European Conference on Computer Vision (ECCV) as well as \u201cEyewear Computing\u201d at the ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp)

    Healthcare in the Smart Home: A Study of Past, Present and Future

    Get PDF
    Open Access journalUbiquitous or Pervasive Computing is an increasingly used term throughout the technology industry and is beginning to enter the consumer electronics space in its most recent form under the umbrella term: “Internet of Things”. One area of focus is in augmenting the home with intelligent, networked sensors and computers to create a Smart Home which opens a host of possibilities for the role of tomorrow’s dwelling. As the world’s population continues to live longer and consequently experience more medical-related ailments, at the same time institutional healthcare is struggling to cope, the role of the Smart Home becomes paramount to monitoring a dweller’s health and providing any necessary intervention. This study looks at the history of Smart Home Healthcare, current research areas, and potential areas of future investigation. Unique categorisations are presented in Activities of Daily Living (ADL) and Personal Sensors, and a thorough look at the application of Smart Home Healthcare is presented. Technology can augment traditional methods of healthcare delivery and in some cases completely replace it. Costs can be reduced and medical adherence can be increased, all of which contribute to a more sustainable and effective model of care

    EOG-Based Human–Computer Interface: 2000–2020 Review

    Get PDF
    Electro-oculography (EOG)-based brain-computer interface (BCI) is a relevant technology influencing physical medicine, daily life, gaming and even the aeronautics field. EOG-based BCI systems record activity related to users' intention, perception and motor decisions. It converts the bio-physiological signals into commands for external hardware, and it executes the operation expected by the user through the output device. EOG signal is used for identifying and classifying eye movements through active or passive interaction. Both types of interaction have the potential for controlling the output device by performing the user's communication with the environment. In the aeronautical field, investigations of EOG-BCI systems are being explored as a relevant tool to replace the manual command and as a communicative tool dedicated to accelerating the user's intention. This paper reviews the last two decades of EOG-based BCI studies and provides a structured design space with a large set of representative papers. Our purpose is to introduce the existing BCI systems based on EOG signals and to inspire the design of new ones. First, we highlight the basic components of EOG-based BCI studies, including EOG signal acquisition, EOG device particularity, extracted features, translation algorithms, and interaction commands. Second, we provide an overview of EOG-based BCI applications in the real and virtual environment along with the aeronautical application. We conclude with a discussion of the actual limits of EOG devices regarding existing systems. Finally, we provide suggestions to gain insight for future design inquiries
    corecore