134 research outputs found

    Active-set newton algorithm for overcomplete non-negative representations of audio

    Get PDF
    acceptedVersionPeer reviewe

    Analysis of an efficient parallel implementation of active-set Newton algorithm

    Full text link
    [EN] This paper presents an analysis of an efficient parallel implementation of the active-set Newton algorithm (ASNA), which is used to estimate the nonnegative weights of linear combinations of the atoms in a large-scale dictionary to approximate an observation vector by minimizing the Kullback¿Leibler divergence between the observation vector and the approximation. The performance of ASNA has been proved in previous works against other state-of-the-art methods. The implementations analysed in this paper have been developed in C, using parallel programming techniques to obtain a better performance in multicore architectures than the original MATLAB implementation. Also a hardware analysis is performed to check the influence of CPU frequency and number of CPU cores in the different implementations proposed. The new implementations allow ASNA algorithm to tackle real-time problems due to the execution time reduction obtained.This work has been partially supported by Programa de FPU del MECD, by MINECO and FEDER from Spain, under the projects TEC2015-67387- C4-1-R, and by project PROMETEO FASE II 2014/003 of Generalitat Valenciana. The authors want to thank Dr. Konstantinos Drossos for some very useful mind changing discussions. This work has been conducted in Laboratory of Signal Processing, Tampere University of Technology.San Juan-Sebastian, P.; Virtanen, T.; García Mollá, VM.; Vidal Maciá, AM. (2018). Analysis of an efficient parallel implementation of active-set Newton algorithm. The Journal of Supercomputing. 75(3):1298-1309. https://doi.org/10.1007/s11227-018-2423-5S12981309753Raj B, Smaragdis P (2005) Latent variable decomposition of spectrograms for single channel speaker separation. In: Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA 2005), New Paltz, NyBertin N, Badeau R, Vincent E (2010) Enforcing harmonicity and smoothness in Bayesian non-negative matrix factorization applied to polyphonic music transcription. IEEE Trans Audio Speech Lang Process 18(3):538–549Dikmen O, Mesaros A (2013) Sound event detection using non-negative dictionaries learned from annotated overlapping events. In: IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA 2013). New Paltz, NYLawson CL, Hanson RJ (1995) Solving least squares problems. Society for Industrial and Applied Mathematics, PhiladelphiaVirtanen T (2007) Monaural sound source separation by nonnegative matrix factorization with temporal continuity and sparseness criteria. IEEE Trans Audio Speech Lang Process 15(3):1066–1074Virtanen T, Gemmeke J, Raj B (2013) Active-set Newton algorithm for overcomplete non-negative representations of audio. IEEE Trans Audio Speech Lang Process 21(11):2277–2289Cemgil AT (2009) Bayesian inference for nonnegative matrix factorisation models. Comput Intell Neurosci 2009:785152Cichocki A, Zdunek R, Phan AH, Amari S (2009) Nonnegative matrix and tensor factorizations. Wiley, New YorkMATLAB (2014) The Mathworks Inc., MATLAB R2014B, Natnick MATuomas Virtanen, Original MATLAB implementation of ASNA algorithm. http://www.cs.tut.fi/~tuomasv/software.htmlCarabias-Orti J, Rodriguez-Serrano F, Vera-Candeas P, Canadas-Quesada F, Ruiz-Reyes N (2013) Constrained non-negative sparse coding using learnt instrument templates for realtime music transcription. Eng Appl Artif Intell 26:1671–1680San Juan P, Virtanen T, Garcia-Molla Victor M, Vidal Antonio M (2016) Efficient parallel implementation of active-set newton algorithm for non-negative sparse representations. In: 16th International Conference on Computational and Mathematical Methods in Science and Engineering (CMMSE 2016), Rota, SpainJuan P San, Efficient implementations of ASNA algorithm. https://gitlab.com/P.SanJuan/ASNAOpenMP v4.5 specification (2015). http://www.openmp.org/wpcontent/uploads/openmp-4.5.pdfGemmeke JF, Hurmalainen A, Virtanen T, Sun Y (2011) Toward a practical implementation of exemplar-based noise robust ASR. In: Signal Processing Conference, 19th European, IEEE, pp 1490–149

    Generalization of the K-SVD algorithm for minimization of ß-divergence

    Full text link
    [EN] In this paper, we propose, describe, and test a modification of the K-SVD algorithm. Given a set of training data, the proposed algorithm computes an overcomplete dictionary by minimizing the ß-divergence () between the data and its representation as linear combinations of atoms of the dictionary, under strict sparsity restrictions. For the special case , the proposed algorithm minimizes the Frobenius norm and, therefore, for the proposed algorithm is equivalent to the original K-SVD algorithm. We describe the modifications needed and discuss the possible shortcomings of the new algorithm. The algorithm is tested with random matrices and with an example based on speech separation.This work has been partially supported by the EU together with the Spanish Government through TEC2015-67387-C4-1-R (MINECO/FEDER) and by Programa de FPU del Ministerio de Educacion, Cultura y Deporte FPU13/03828 (Spain).García Mollá, VM.; San Juan-Sebastian, P.; Virtanen, T.; Vidal Maciá, AM.; Alonso-Jordá, P. (2019). Generalization of the K-SVD algorithm for minimization of ß-divergence. Digital Signal Processing. 92:47-53. https://doi.org/10.1016/j.dsp.2019.05.001S47539

    Single-channel source separation using non-negative matrix factorization

    Get PDF

    Towards music perception by redundancy reduction and unsupervised learning in probabilistic models

    Get PDF
    PhDThe study of music perception lies at the intersection of several disciplines: perceptual psychology and cognitive science, musicology, psychoacoustics, and acoustical signal processing amongst others. Developments in perceptual theory over the last fifty years have emphasised an approach based on Shannon’s information theory and its basis in probabilistic systems, and in particular, the idea that perceptual systems in animals develop through a process of unsupervised learning in response to natural sensory stimulation, whereby the emerging computational structures are well adapted to the statistical structure of natural scenes. In turn, these ideas are being applied to problems in music perception. This thesis is an investigation of the principle of redundancy reduction through unsupervised learning, as applied to representations of sound and music. In the first part, previous work is reviewed, drawing on literature from some of the fields mentioned above, and an argument presented in support of the idea that perception in general and music perception in particular can indeed be accommodated within a framework of unsupervised learning in probabilistic models. In the second part, two related methods are applied to two different low-level representations. Firstly, linear redundancy reduction (Independent Component Analysis) is applied to acoustic waveforms of speech and music. Secondly, the related method of sparse coding is applied to a spectral representation of polyphonic music, which proves to be enough both to recognise that the individual notes are the important structural elements, and to recover a rough transcription of the music. Finally, the concepts of distance and similarity are considered, drawing in ideas about noise, phase invariance, and topological maps. Some ecologically and information theoretically motivated distance measures are suggested, and put in to practice in a novel method, using multidimensional scaling (MDS), for visualising geometrically the dependency structure in a distributed representation.Engineering and Physical Science Research Counci

    Sparsity and adaptivity for the blind separation of partially correlated sources

    Get PDF
    Blind source separation (BSS) is a very popular technique to analyze multichannel data. In this context, the data are modeled as the linear combination of sources to be retrieved. For that purpose, standard BSS methods all rely on some discrimination principle, whether it is statistical independence or morphological diversity, to distinguish between the sources. However, dealing with real-world data reveals that such assumptions are rarely valid in practice: the signals of interest are more likely partially correlated, which generally hampers the performances of standard BSS methods. In this article, we introduce a novel sparsity-enforcing BSS method coined Adaptive Morphological Component Analysis (AMCA), which is designed to retrieve sparse and partially correlated sources. More precisely, it makes profit of an adaptive re-weighting scheme to favor/penalize samples based on their level of correlation. Extensive numerical experiments have been carried out which show that the proposed method is robust to the partial correlation of sources while standard BSS techniques fail. The AMCA algorithm is evaluated in the field of astrophysics for the separation of physical components from microwave data.Comment: submitted to IEEE Transactions on signal processin

    Non-Negative Group Sparsity with Subspace Note Modelling for Polyphonic Transcription

    Get PDF
    This work was supported by EPSRC Platform Grant EPSRC EP/K009559/1, EPSRC Grant EP/L027119/1, and EPSRC Grant EP/J010375/1

    Proceedings of the second "international Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST'14)

    Get PDF
    The implicit objective of the biennial "international - Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST) is to foster collaboration between international scientific teams by disseminating ideas through both specific oral/poster presentations and free discussions. For its second edition, the iTWIST workshop took place in the medieval and picturesque town of Namur in Belgium, from Wednesday August 27th till Friday August 29th, 2014. The workshop was conveniently located in "The Arsenal" building within walking distance of both hotels and town center. iTWIST'14 has gathered about 70 international participants and has featured 9 invited talks, 10 oral presentations, and 14 posters on the following themes, all related to the theory, application and generalization of the "sparsity paradigm": Sparsity-driven data sensing and processing; Union of low dimensional subspaces; Beyond linear and convex inverse problem; Matrix/manifold/graph sensing/processing; Blind inverse problems and dictionary learning; Sparsity and computational neuroscience; Information theory, geometry and randomness; Complexity/accuracy tradeoffs in numerical methods; Sparsity? What's next?; Sparse machine learning and inference.Comment: 69 pages, 24 extended abstracts, iTWIST'14 website: http://sites.google.com/site/itwist1
    corecore