437 research outputs found

    Kernel-based Active Subspaces with application to CFD parametric problems using Discontinuous Galerkin method

    Get PDF
    A new method to perform a nonlinear reduction in parameter spaces is proposed. By using a kernel approach it is possible to find active subspaces in high-dimensional feature spaces. A mathematical foundation of the method is presented, with several applications to benchmark model functions, both scalar and vector-valued. We also apply the kernel-based active subspaces extension to a CFD parametric problem using the Discontinuous Galerkin method. A full comparison with respect to the linear active subspaces technique is provided for all the applications, proving the better performances of the proposed method. Moreover we show how the new kernel method overcomes the drawbacks of the active subspaces application for radial symmetric model functions

    Advances in geometrical parametrization and reduced order models and methods for computational fluid dynamics problems in applied sciences and engineering: overview and perspectives

    Get PDF
    Several problems in applied sciences and engineering require reduction techniques in order to allow computational tools to be employed in the daily practice, especially in iterative procedures such as optimization or sensitivity analysis. Reduced order methods need to face increasingly complex problems in computational mechanics, especially into a multiphysics setting. Several issues should be faced: stability of the approximation, efficient treatment of nonlinearities, uniqueness or possible bifurcations of the state solutions, proper coupling between fields, as well as offline-online computing, computational savings and certification of errors as measure of accuracy. Moreover, efficient geometrical parametrization techniques should be devised to efficiently face shape optimization problems, as well as shape reconstruction and shape assimilation problems. A related aspect deals with the management of parametrized interfaces in multiphysics problems, such as fluid-structure interaction problems, and also a domain decomposition based approach for complex parametrized networks. We present some illustrative industrial and biomedical problems as examples of recent advances on methodological developments. \ua9 The author

    Advances in geometrical parametrization and reduced order models and methods for computational fluid dynamics problems in applied sciences and engineering: Overview and perspectives

    Get PDF
    Several problems in applied sciences and engineering require reduction techniques in order to allow computational tools to be employed in the daily practice, especially in iterative procedures such as optimization or sensitivity analysis. Reduced order methods need to face increasingly complex problems in computational mechanics, especially into a multiphysics setting. Several issues should be faced: stability of the approximation, efficient treatment of nonlinearities, uniqueness or possible bifurcations of the state solutions, proper coupling between fields, as well as offline-online computing, computational savings and certification of errors as measure of accuracy. Moreover, efficient geometrical parametrization techniques should be devised to efficiently face shape optimization problems, as well as shape reconstruction and shape assimilation problems. A related aspect deals with the management of parametrized interfaces in multiphysics problems, such as fluid-structure interaction problems, and also a domain decomposition based approach for complex parametrized networks. We present some illustrative industrial and biomedical problems as examples of recent advances on methodological developments
    • …
    corecore