295 research outputs found

    Active Safety System with RF Energy Harvesting Capabilities for Industrial Applications using Interchangeable Implements

    Get PDF
    In this paper a system for the remote powering of low power electronic devices is presented. The system has been applied to a real industrial application allowing to enhance active safety in industrial vehicles. It is comprised of two main devices: i) the End Device (ED) with an embedded Radio Frequency (RF) energy harvester; ii) the Illuminator-Gateway Device (IGD) with an embedded RF power transmitter. Thanks to the optimization of the customized dual band Planar Inverted Folded Antenna (PIFA) used, the ULP architecture of the ED, the hardware-software co-design approach used and the optimization of the ED firmware, the proposed system is able to provide up to the 63% of the power required by the ED when it is on duty

    System With RF Power Delivery Capabilities for Active Safety Enhancement in Industrial Vehicles Using Interchangeable Implements

    Get PDF
    In this paper, an active system for safety enhancement in industrial and off-highway vehicles using interchangeable implements is presented. The system, applied to the real case study of automatic identification of implements connected to a telehandler, is developed by adopting a hardware–software codesign approach. It is comprised of two devices: the Illuminator-Gateway Device (IGD) and the End Device (ED). Differently from other similar solutions, the system embeds a complete radio frequency (RF) power delivery system that is compliant with the regulations in force in Europe and in North America to extend the battery lifetime of the ED. In particular, the IGD, positioned on the free end of the telescopic arm of the telehandler, supplies the RF energy required for the operations of the ED and acts as a gateway sending the data received from the ED to the other Electronic Control Units (ECUs) of the vehicle. The ED, instead, is mounted on the connected implement, collects the RF energy delivered by the IGD, and wirelessly sends the unique identifier, the key parameters, and the calculated effective working time of the implement. This information can be used by the main ECU of the vehicle for safety-related purposes and programmed maintenance. Experimental results show that the implemented RF power delivery system is able to gather up to 63% of the power required by the ED when it is on duty, thus significantly extending its battery lifetime

    Wireless sensor systems with energy harvesting capabilities for safety enhancement in agricultural vehicles

    Get PDF
    This paper presents an overview of a multi-sensor wireless system applied to agricultural vehicles. The data provided by the different kinds of ad-hoc developed wireless sensors can be used as starting point for the implementation of an automatic system for the active safety enhancement of the vehicles. In order to guarantee a lifetime comparable with the one of the implement or trailer where they are mounted, each sensor has his own energy harvesting system able to gather energy from the vibrations occurring in the environment where the sensor operates

    The energy problem in resource constrained wireless networks

    Get PDF
    Today Wireless Sensor Networks are part of a wider scenario involving several wireless and wired communication technology: the Internet Of Things (IoT). The IoT envisions billions of tiny embedded devices, called Smart Objects, connected in a Internet-like structure. Even if the integration of WSNs into the IoT scenario is nowadays a reality, the main bottleneck of this technology is the energy consumption of sensor nodes, which quickly deplete the limited amount of energy of available in batteries. This drawback, referred to as the energy problem, was addressed in a number of research papers proposing various energy optimization approaches to extend sensor nodes lifetime. However, energy problem is still an open issue that prevents the full exploitation of WSN technology. This thesis investigates the energy problem in WSNs and introduces original solutions trying to mitigate drawbacks related to this phenomenon. Starting from solutions proposed by the research community in WSNs, we deeply investigate critical and challenging factors concerning the energy problem and we came out with cutting-edge low-power hardware platforms, original software energy-aware protocols and novel energy-neutral hardware/software solutions overcoming the state-of-art. Concerning low-power hardware, we introduce the MagoNode, a new WSN mote equipped with a radio frequency (RF) front-end which enhances radio performance. We show that in real applicative contexts, the advantages introduced by the RF front-end keep packet re-trasmissions and forwards low. Furthermore, we present the ultra low-power Wake-Up Radio (WUR) system we designed and the experimental activity to validate its performance. In particular, our Wake-up Radio Receiver (WRx) features a sensitivity of -50 dBm, has a current consumption of 579nA in idle-listening and features a maximum radio range of about 19 meters. What clearly resulted from the experimental activity is that performance of the WRx is strongly affected by noise. To mitigate the impact of noise on WUR communication we implemented a Forward Error Correction (FEC) mechanism based on Hamming code. We performed several test to determine the effectiveness of the proposed solution. The outcome show that our WUR system can be employed in environment where the Bit Error Rate (BER) induced by noise is up to 10^2, vice versa, when the BER induced by noise is in the order of 10´3 or below, it is not worth to use any Forward Error Correction (FEC) mechanism since it does not introduce any advantages compared to uncoded data. In the context of energy-aware solutions, we present two protocols: REACTIVE and ALBA-WUR. REACTIVE is a low-power over-the-air programming (OAP) protocol we implemented to improve the energy efficiency and lower the image dissemination time of Deluge T2, a well-known OAP protocol implemented in TinyOS. To prove the effectiveness of REACTIVE we compared it to Deluge exploiting a testbed made of MagoNode motes. Results of our experiments show that the image dissemination time is 7 times smaller than Deluge, while the energy consumption drops 2.6 times. ALBA-WUR redesigns ALBA-R protocol, extending it to exploit advantages of WUR technology. We compared ALBA-R and ALBA-WUR in terms of current consumption and latency via simulations. Results show that ALBA-WUR estimated network lifetime is decades longer than that achievable by ALBA-R. Furthermore, end-to-end packet latency features by ALBA-WUR is comparable to that of ALBA-R. While the main goal of energy optimization approaches is motes lifetime maximization, in recent years a new research branch in WSN emerged: Energy Neutrality. In contrast to lifetime maximization approach, energy neutrality foresees the perennial operation of the network. This can be achieve only making motes use the harvested energy at an appropriate rate that guarantees an everlasting lifetime. In this thesis we stress that maximizing energy efficiency of a hardware platform dedicated to WSNs is the key to reach energy neutral operation (ENO), still providing reasonable data rates and delays. To support this conjecture, we designed a new hardware platform equipped with our wake-up radio (WUR) system able to support ENO, the MagoNode++. The MagoNode++ features a energy harvester to gather energy from solar and thermoelectric sources, a ultra low power battery and power management module and our WUR system to improve the energy efficiency of wireless communications. To prove the goodness in terms of current consumption of the MagoNode++ we ran a series of experiments aimed to assess its performance. Results show that the MagoNode++ consumes only 2.8 µA in Low Power Mode with its WRx module in listening mode. While carrying on our research work on solutions trying to mitigate the energy problem, we also faced a challenging application context where the employment of WSNs is considered efficient and effective: structural health monitoring (SHM). SHM deals with the early detection of damages to civil and industrial structures and is emerging as a fundamental tool to improve the safety of these critical infrastructures. In this thesis we present two real world WSNs deployment dedicated to SHM. The first concerned the monitoring of the Rome B1 Underground construction site. The goal was to monitor the structural health of a tunnel connecting two stops. The second deployment concerned the monitoring of the structural health of buildings in earthquake-stricken areas. From the experience gained during these real world deployments, we designed the Modular Monitoring System (MMS). The MMS is a new low-power platform dedicated to SHM based on the MagoNode. We validated the effectiveness of the MMS low-power design performing energy measurements during data acquisition from actual transducers

    Gestion de l'énergie dans un réseau de capteurs au niveau application

    Get PDF
    Energy is a key resource in Wireless Sensor Networks (WSNs), especially when sensor nodes are powered by batteries. This thesis is investigates how to save energy of the whole WSN, at the application level, thanks to control strategies, in real time and in a dynamic way. The first energy management strategy investigated is based on Model Predictive Control (MPC). The choice of MPC is motivated by the global objectives that are to reduce the energy consumption of the set of sensor nodes while ensuring a given service, named mission, for the sensor network. Moreover, a set of constraints on the binary control variables and on the sensor modes must be fulfilled. The second energy management strategy at the application level is based on a Hybrid Dynamical System (HDS) approach. This choice is motivated by the hybrid inherent nature of the WSN system when energy management is considered. The hybrid nature basically comes from the combination of continuous physical processes, namely, the charge / discharge of the node batteries; while the discrete part is related to the change in the functioning modes and the Unreachable condition of the nodes. The proposed strategies are evaluated and compared in simulation on a realistic test-case. Lastly, they have been implemented on a real test-bench and the results obtained have been discussed.L'énergie est une ressource clé dans les réseaux de capteurs sans fil (WSNs), en particulier lorsque les nœuds capteurs sont alimentés par des batteries. Cette thèse s'inscrit dans le contexte de la réduction de la consommation de l'énergie d'un réseau de capteurs au niveau application construite au-dessus de ce réseau, grâce à des stratégies de contrôle, en temps réel et de façon dynamique. La première stratégie de gestion de l'énergie considérée s'appuie sur le contrôle prédictif (MPC). Le choix de MPC est motivé par les objectifs globaux qui sont de réduire la consommation d'énergie de l'ensemble des nœuds capteurs tout en assurant un service donné, nommé mission, pour le réseau de capteurs. En outre, un ensemble de contraintes sur les variables de contrôle binaires et sur les nœuds capteur doit être rempli. La deuxième stratégie de gestion de l'énergie au niveau de l'application utilise une approche de contrôle hybride (HDS). Ce choix est motivé par la nature inhérente du système WSN qui est par essence hybride, en particulier lorsque l'on s'intéresse à la gestion de l'énergie. La nature hybride vient essentiellement de la combinaison de processus physiques continus tels la charge et décharge des batteries des nœuds; tandis que la partie discrète est liée à la modification des modes de fonctionnement et l'état Inaccessible des nœuds. Les stratégies proposées sont évaluées et comparées en simulation sur des différents scenarios réalistes. Elles ont aussi \'et\'e mises en œuvre sur un banc d'essai réel et les résultats obtenus ont été discutés

    Double smart energy harvesting system for self-powered industrial IoT

    Get PDF
    312 p. 335 p. (confidencial)Future factories would be based on the Industry 4.0 paradigm. IndustrialInternet of Things (IIoT) represent a part of the solution in this field. Asautonomous systems, powering challenges could be solved using energy harvestingtechnology. The present thesis work combines two alternatives of energy input andmanagement on a single architecture. A mini-reactor and an indoor photovoltaiccell as energy harvesters and a double power manager with AC/DC and DC/DCconverters controlled by a low power single controller. Furthermore, theaforementioned energy management is improved with artificial intelligencetechniques, which allows a smart and optimal energy management. Besides, theharvested energy is going to be stored in a low power supercapacitor. The workconcludes with the integration of these solutions making IIoT self-powered devices.IK4 Teknike

    Acoustic power distribution techniques for wireless sensor networks

    Get PDF
    Recent advancements in wireless power transfer technologies can solve several residual problems concerning the maintenance of wireless sensor networks. Among these, air-based acoustic systems are still less exploited, with considerable potential for powering sensor nodes. This thesis aims to understand the significant parameters for acoustic power transfer in air, comprehend the losses, and quantify the limitations in terms of distance, alignment, frequency, and power transfer efficiency. This research outlines the basic concepts and equations overlooking sound wave propagation, system losses, and safety regulations to understand the prospects and limitations of acoustic power transfer. First, a theoretical model was established to define the diffraction and attenuation losses in the system. Different off-the-shelf transducers were experimentally investigated, showing that the FUS-40E transducer is most appropriate for this work. Subsequently, different load-matching techniques are analysed to identify the optimum method to deliver power. The analytical results were experimentally validated, and complex impedance matching increased the bandwidth from 1.5 to 4 and the power transfer efficiency from 0.02% to 0.43%. Subsequently, a detailed 3D profiling of the acoustic system in the far-field region was provided, analysing the receiver sensitivity to disturbances in separation distance, receiver orientation and alignment. The measured effects of misalignment between the transducers are provided as a design graph, correlating the output power as a function of separation distance, offset, loading methods and operating frequency. Finally, a two-stage wireless power network is designed, where energy packets are inductively delivered to a cluster of nodes by a recharge vehicle and later acoustically distributed to devices within the cluster. A novel dynamic recharge scheduling algorithm that combines weighted genetic clustering with nearest neighbour search is developed to jointly minimise vehicle travel distance and power transfer losses. The efficacy and performance of the algorithm are evaluated in simulation using experimentally derived traces that presented 90% throughput for large, dense networks.Open Acces

    Internet of Things Applications - From Research and Innovation to Market Deployment

    Get PDF
    The book aims to provide a broad overview of various topics of Internet of Things from the research, innovation and development priorities to enabling technologies, nanoelectronics, cyber physical systems, architecture, interoperability and industrial applications. It is intended to be a standalone book in a series that covers the Internet of Things activities of the IERC – Internet of Things European Research Cluster from technology to international cooperation and the global "state of play".The book builds on the ideas put forward by the European research Cluster on the Internet of Things Strategic Research Agenda and presents global views and state of the art results on the challenges facing the research, development and deployment of IoT at the global level. Internet of Things is creating a revolutionary new paradigm, with opportunities in every industry from Health Care, Pharmaceuticals, Food and Beverage, Agriculture, Computer, Electronics Telecommunications, Automotive, Aeronautics, Transportation Energy and Retail to apply the massive potential of the IoT to achieving real-world solutions. The beneficiaries will include as well semiconductor companies, device and product companies, infrastructure software companies, application software companies, consulting companies, telecommunication and cloud service providers. IoT will create new revenues annually for these stakeholders, and potentially create substantial market share shakeups due to increased technology competition. The IoT will fuel technology innovation by creating the means for machines to communicate many different types of information with one another while contributing in the increased value of information created by the number of interconnections among things and the transformation of the processed information into knowledge shared into the Internet of Everything. The success of IoT depends strongly on enabling technology development, market acceptance and standardization, which provides interoperability, compatibility, reliability, and effective operations on a global scale. The connected devices are part of ecosystems connecting people, processes, data, and things which are communicating in the cloud using the increased storage and computing power and pushing for standardization of communication and metadata. In this context security, privacy, safety, trust have to be address by the product manufacturers through the life cycle of their products from design to the support processes. The IoT developments address the whole IoT spectrum - from devices at the edge to cloud and datacentres on the backend and everything in between, through ecosystems are created by industry, research and application stakeholders that enable real-world use cases to accelerate the Internet of Things and establish open interoperability standards and common architectures for IoT solutions. Enabling technologies such as nanoelectronics, sensors/actuators, cyber-physical systems, intelligent device management, smart gateways, telematics, smart network infrastructure, cloud computing and software technologies will create new products, new services, new interfaces by creating smart environments and smart spaces with applications ranging from Smart Cities, smart transport, buildings, energy, grid, to smart health and life. Technical topics discussed in the book include: • Introduction• Internet of Things Strategic Research and Innovation Agenda• Internet of Things in the industrial context: Time for deployment.• Integration of heterogeneous smart objects, applications and services• Evolution from device to semantic and business interoperability• Software define and virtualization of network resources• Innovation through interoperability and standardisation when everything is connected anytime at anyplace• Dynamic context-aware scalable and trust-based IoT Security, Privacy framework• Federated Cloud service management and the Internet of Things• Internet of Things Application

    Energy Neutral Design of Embedded Systems for Resource Constrained Monitoring Applications

    Get PDF
    Automatic monitoring of environments, resouces and human processes are crucial and foundamental tasks to improve people's quality of life and to safeguard the natural environment. Today, new technologies give us the possibility to shape a greener and safer future. The more specialized is the kind of monitoring we want to achieve, more tight are the constraints in terms of reliability, low energy and maintenance-free autonomy. The challenge in case of tight energy constraints is to find new techniques to save as much power as possible or to retrieve it from the very same environment where the system operates, towards the realization of energy neutral embedded monitoring systems. Energy efficiency and battery autonomy of such devices are still the major problem impacting reliability and penetration of such systems in risk-related activities of our daily life. Energy management must not be optimized to the detriment of the quality of monitoring and sensors can not be operated without supply. In this thesis, I present different embedded system designs to bridge this gap, both from the hardware and software sides, considering specific resource constrained scenarios as case studies that have been used to develop solutions with much broader validity. Results achieved demonstrate that energy neutrality in monitoring under resource constrained conditions can be obtained without compromising efficiency and reliability of the outcomes

    Sensor Characteristics Reference Guide

    Full text link
    • …
    corecore