495 research outputs found

    Low-voltage ride-through for a three-phase four-leg photovoltaic system using SRFPI control strategy

    Get PDF
    With the innovative progresses in power electronics in recent years, photovoltaic (PV) systems emerged as one of the promising sources for electricity generation at the distribution network. Nonetheless, connection of PV power plants to the utility grid under abnormal conditions has become a significant issue and novel grid codes should be recommend. The low-voltage ride-through (LVRT) capability is one of the challenges faced by the integration of PV power stations into electrical grid under abnormal conditions. This work firstly provides a discussion on recent control schemes for PV power plants to enhance the LVRT capabilities. Next, a control scheme for a three-phase four-leg grid-connected PV inverter under unbalanced grid fault conditions using synchronous reference frame proportional integral (SRFPI) controller is proposed. Simulation studies are performed to investigate the influence of the control strategy on the PV inverter

    A Novel Control Method For Grid Side Inverters Under Generalized Unbalanced Operating Conditions

    Get PDF
    This thesis provides a summary on renewable energy sources integration into the grid, using an inverter, along with a comprehensive literature research on variety of available control methods. A new generalized method for grid side inverter control under unbalanced operating conditions is also proposed. The presented control method provides complete harmonic elimination in line currents and DC link voltage with adjustable power factor. The method is general, and can be used for all levels of imbalance in grid voltages and line impedances. The control algorithm proposed in this work has been implemented by using MATLAB Simulink and dSPACE RT1104 control system. Simulation and experimental results presented in this thesis are in excellent agreement

    Flexible operation of grid-interfacing converters in distribution networks : bottom-up solutions to voltage quality enhancement

    Get PDF
    Due to the emerging application of distributed generation (DG), large numbers of DG systems are expected to deliver electricity into the distribution network in the near future. For the most part these systems are not ready for riding through grid disturbances and cannot mitigate unwanted influences on the grid. On the one hand, with the increasing use of sensitive and critical equipment by customers, the electricity network is required to serve high voltage quality. On the other hand, more and more unbalanced and nonlinear equipment, including DG units, is negatively affecting the power quality of distribution networks. To adapt to the future distribution network, the tendency for grid-interfacing converters will be to integrate voltage quality enhancement with DG functionality. In this thesis, the flexible operation of grid-interfacing converters in distribution networks is investigated for the purpose of voltage quality enhancement at both the grid and user sides. The research is carried out in a bottom-up fashion, from the low-level power electronics control, through the realization of individual system functionality, finally arriving at system-level concepts and implementation. Being essential to the control of grid-interfacing converters, both stationaryframe techniques for voltage detection and synchronization in disturbed grids, and asymmetrical current regulation are investigated. Firstly, a group of high performance filters for the detection of fundamental symmetrical sequences and harmonics under various grid conditions is proposed. The robustness of the proposed filters to small grid-frequency variation and their adaptability to large frequency change are discussed. Secondly, multiple reference frame current regulation is explored for dealing with unbalanced grid conditions. As a complement to the existing proportional resonant (PR) controllers, sequence-decoupled resonant (SDR) controllers are proposed for regulating individual symmetric sequences. Based on the modeling of a four-leg grid-connected system in different reference frames, three types of controllers, i.e. PI, PR, and proportional plus SDR controllers are compared. Grid-interactive control of distributed power generation, i.e. voltage unbalance compensation, grid-fault ride-through control and flexible power transfer, as well as the modeling of harmonic interaction, are all investigated. The in-depth study and analysis of these grid interactions show the grid-support possibilities and potential negative impact on the grid of inverter-based DG units, beyond their primary goal of power delivery. In order to achieve a co-operative voltage unbalance compensation based on distributed DG systems, two control schemes, namely voltage unbalance factor based control and negative-sequence admittance control, are proposed. The negativesequence voltages at the grid connection point can be compensated and mitigated by regulating the negative-sequence currents flowing between the grid and DG converters. Flexible active and reactive power control during unbalanced voltage dips is proposed that enables DG systems to enhance grid-fault ride-through capability and to adapt to various requirements for grid voltage support. By changing adaptable weighting factors, the compensation of oscillating power and the regulation of grid currents can be easily implemented. Two joint strategies for the simultaneous control of active and reactive power are derived, which maintain the adaptive controllability that can cope with multiple constraints in practical applications. The contribution of zero-sequence currents to active power control is also analyzed as a complement to the proposed control, which is based on positive- and negative-sequence components. Harmonic interaction between DG inverters and the grid is modeled and analyzed with an impedance-based approach. In order to mitigate the harmonic distortion in a polluted grid, it is proposed to specify output impedance limits as a design constraint for DG inverters. Results obtained from modeling, analysis, and simulations of a distribution network with aggregated DG inverters, show that the proposed method is a simple and effective way for estimating harmonic quasi-resonance problems. By integrating these proposed control strategies in a modified conventional series-parallel structure, we arrived at a group of grid-interfacing system topologies that is suitable for DG applications, voltage quality improvement, and flexible power transfer. A concrete laboratory system details the proposed concepts and specifies the practical problems related to control design. The introduction of multi-level control objectives illustrates that the proposed system can ride through voltage disturbances, can enhance the grid locally, and can continue the power transfer to and from the grid while high voltage quality is maintained for the local loads within the system module. A dual-converter laboratory set-up was built, with which the proposed concepts and practical implementation have been fully demonstrated

    A Comprehensive Survey on Different Control Strategies and Applications of Active Power Filters for Power Quality Improvement

    Get PDF
    This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).Power quality (PQ) has become an important topic in today’s power system scenario. PQ issues are raised not only in normal three-phase systems but also with the incorporation of different distributed generations (DGs), including renewable energy sources, storage systems, and other systems like diesel generators, fuel cells, etc. The prevalence of these issues comes from the non-linear features and rapid changing of power electronics devices, such as switch-mode converters for adjustable speed drives and diode or thyristor rectifiers. The wide use of these fast switching devices in the utility system leads to an increase in disturbances associated with harmonics and reactive power. The occurrence of PQ disturbances in turn creates several unwanted effects on the utility system. Therefore, many researchers are working on the enhancement of PQ using different custom power devices (CPDs). In this work, the authors highlight the significance of the PQ in the utility network, its effect, and its solution, using different CPDs, such as passive, active, and hybrid filters. Further, the authors point out several compensation strategies, including reference signal generation and gating signal strategies. In addition, this paper also presents the role of the active power filter (APF) in different DG systems. Some technical and economic considerations and future developments are also discussed in this literature. For easy reference, a volume of journals of more than 140 publications on this particular subject is reported. The effectiveness of this research work will boost researchers’ ability to select proper control methodology and compensation strategy for various applications of APFs for improving PQ.publishedVersio

    POWER QUALITY CONTROL AND COMMON-MODE NOISE MITIGATION FOR INVERTERS IN ELECTRIC VEHICLES

    Get PDF
    Inverters are widely utilized in electric vehicle (EV) applications as a major voltage/current source for onboard battery chargers (OBC) and motor drive systems. The inverter performance is critical to the efficiency of EV system energy conversion and electronics system electro-magnetic interference (EMI) design. However, for AC systems, the bandwidth requirement is usually low compared with DC systems, and the control impact on the inverter differential-mode (DM) and common-mode (CM) performance are not well investigated. With the wide-band gap (WBG) device era, the switching capability of power electronics devices drastically improved. The DM/CM impact that was brought by the WBG device-based inverter becomes more serious and has not been completely understood. This thesis provides an in-depth analysis of on-board inverter control strategies and the corresponding DM/CM impact on the EV system. The OBC inverter control under vehicle-to-load (V2L) mode will be documented first. A virtual resistance damping method minimizes the nonlinear load harmonics, and a neutral balancing method regulates the unbalanced load impact through the fourth leg. In the motor drive system, a generalized CM voltage analytical model and a current ripple prediction model are built for understanding the system CM and DM stress with respect to different modulation methods, covering both 2-level and 3-level topologies. A novel CM EMI damping modulation scheme is proposed for 6-phase inverter applications. The performance comparison between the proposed methods and the conventional solution is carried out. Each topic is supported by the corresponding hardware platform and experimental validation

    Enhanced decoupling current scheme with selective harmonic elimination pulse width modulation for cascaded multilevel inverter based static synchronous compensator

    Get PDF
    This dissertation is dedicated to a comprehensive study and performance analysis of the transformer-less Multilevel Cascaded H-bridge Inverter (MCHI) based STATic synchronous COMpensator (STATCOM). Among the shunt-connected Flexible AC Transmission System (FACTS) controllers, STATCOM has shown extensive feasibility and effectiveness in solving a wide range of power quality problems. By referring to the literature reviews, MCHI with separated DC capacitors is certainly the most versatile power inverter topology for STATCOM applications. However, due to the ill-defined transfer functions, complex control schemes and formulations were emerged to achieve a low-switching frequency high-bandwidth power control. As a result, adequate controller parameters were generally obtained by using trial and error method, which were practically ineffective and time-consuming. In this dissertation, the STATCOM is controlled to provide reactive power (VAR) compensation at the Point of Common Coupling (PCC) under different loading conditions. The goal of this work is to enhance the performance of the STATCOM with the associated proposed control scheme in achieving high dynamic response, improving transient performance, and producing high-quality output voltage waveform. To evaluate the superiority of the proposed control scheme, intensive simulation studies and numerous experiments are conducted accordingly, where a very good match between the simulation results and the experimental results is achieved in all cases and documented in this dissertation

    Modular Multilevel Converters with Integrated Split Battery Energy Storage

    Get PDF
    The electric power grid is undergoing significant changes and updates nowadays, especially on a production and transmission level. Initially, the move towards a distributed generation in contrast to the existing centralized one implies a significant integration of renewable energy sources and electricity storage systems. In addition, environmental awareness and related concerns regarding pollutant emissions have given rise to a high interest in electrical mobility. Advanced power electronics interfacing systems are expected to play a key role in the development of such modern controllable and efficient large-scale grids and associated infrastructures. During the last decade, a global research and development interest has been stimulated in the field of modular multilevel conversion, due to the well-known offered advantages over conventional solutions in the medium- and high-voltage and power range. In the context of battery energy storage systems, the Modular Multilevel Converter (MMC) family exhibits an additional attractive feature, i.e., the capability of embedding such storage elements in a split manner, given the existence of several submodules operating at significantly lower voltages. This thesis deals with several technical challenges associated with Modular Multilevel Converters as well as their enhancement with battery energy storage elements. Initially, the accurate submodule capacitor voltage ripple estimation for a DC/AC MMC is derived analytically, avoiding any strong assumptions. This is beneficial for converter dimensioning purposes as well as for the implementation improvement of several control schemes, which have been proposed in the literature. The impact of unbalanced grid conditions on the operation and design of an MMC is then investigated, drawing important conclusions regarding the choice of line current control and required capacitive storage energy during grid faults. [...

    Analysis and assessment of modular multilevel converter internal control schemes

    Get PDF
    Adoption of distributed submodule (SM) capacitors in a modular multilevel converter (MMC) necessitates complex controllers to ensure the stability of its internal dynamics. This paper presents comprehensive analysis and assessment of different proportional resonant (PR)-based control schemes proposed to stabilize the internal dynamics and ensure ac and dc sides power quality of the MMC within a dc transmission system. With the consideration of passive component tolerances, different energy and voltage based control schemes under various conditions are analyzed. It has been established that without vertical voltage balance control, unequal passive component values in the upper and lower arms of the same phase-leg may cause: unbalanced fundamental currents in the arms, unequal dc voltage across the arms, and fundamental oscillations in the common-mode currents that lead to fundamental frequency ripple in the dc link current. The theoretical analysis that explains this mechanism is presented, and is used to show that vertical voltage balancing is necessary for the nullification of arm voltage difference and suppression of odd oscillations caused by capacitive/inductive asymmetry between arms of the same phase-leg. Simulations support the theoretical analysis and the effectiveness of voltage balancing in ensuring correct operation, independent of tolerances of the MMC passive elements and operating conditions. A new direct method for elimination of fundamental oscillations in the common-mode and dc link current is proposed. Experimental results from a singlephase MMC prototype validate the presented theoretical discussions and simulations

    Microgrids Power Quality Enhancement Using Model Predictive Control

    Get PDF
    In electric power systems, any deviation with respect to the theoretical sinusoidal waveform is considered to be a disturbance in the power quality of the electrical grid. The deviation can alter any of the parameters of the waveform: frequency, amplitude, and symmetry among phases. Microgrid, as a part of the electric power system, has to contribute providing an adequate current waveform in grid connected-mode, as well as to guarantee similar voltage features than the standard requirement given for public distribution grids under normal exploitation conditions in islanded mode. Adequate power quality supply is necessary for the correct compatibility between all the devices connected to the same grid. In this paper, the power quality of microgrids is managed using a Model Predictive Control (MPC) methodology which regulates the power converters of the microgrids in order to achieve the requirements. The control algorithm is developed for the following microgrids working modes: grid-connected, islanded, and interconnected. The simulation results demonstrate that the proposed methodology improves the transient response in comparison with classical methods in all the working modes, minimizing the harmonic content in the current and the voltage even with the presence of non-balanced and non-harmonic-free three-phase voltage and current systems
    corecore