5,287 research outputs found

    A Survey of Fault-Tolerance and Fault-Recovery Techniques in Parallel Systems

    Full text link
    Supercomputing systems today often come in the form of large numbers of commodity systems linked together into a computing cluster. These systems, like any distributed system, can have large numbers of independent hardware components cooperating or collaborating on a computation. Unfortunately, any of this vast number of components can fail at any time, resulting in potentially erroneous output. In order to improve the robustness of supercomputing applications in the presence of failures, many techniques have been developed to provide resilience to these kinds of system faults. This survey provides an overview of these various fault-tolerance techniques.Comment: 11 page

    RADIC II : a fault tolerant architecture with flexible dynamic redundancy

    Get PDF
    The demand for computational power has been leading the improvement of the High Performance Computing (HPC) area, generally represented by the use of distributed systems like clusters of computers running parallel applications. In this area, fault tolerance plays an important role in order to provide high availability isolating the application from the faults effects. Performance and availability form an undissociable binomial for some kind of applications. Therefore, the fault tolerant solutions must take into consideration these two constraints when it has been designed. In this dissertation, we present a few side-effects that some fault tolerant solutions may presents when recovering a failed process. These effects may causes degradation of the system, affecting mainly the overall performance and availability. We introduce RADIC-II, a fault tolerant architecture for message passing based on RADIC (Redundant Array of Distributed Independent Fault Tolerance Controllers) architecture. RADIC-II keeps as maximum as possible the RADIC features of transparency, decentralization, flexibility and scalability, incorporating a flexible dynamic redundancy feature, allowing to mitigate or to avoid some recovery side-effects.La demanda de computadores más veloces ha provocado el incremento del área de computación de altas prestaciones, generalmente representado por el uso de sistemas distribuidos como los clusters de computadores ejecutando aplicaciones paralelas. En esta área, la tolerancia a fallos juega un papel muy importante a la hora de proveer alta disponibilidad, aislando los efectos causados por los fallos. Prestaciones y disponibilidad componen un binomio indisociable para algunos tipos de aplicaciones. Por eso, las soluciones de tolerancia a fallos deben tener en consideración estas dos restricciones desde el momento de su diseño. En esta disertación, presentamos algunos efectos colaterales que se puede presentar en ciertas soluciones tolerantes a fallos cuando recuperan un proceso fallado. Estos efectos pueden causar una degradación del sistema, afectando las prestaciones y disponibilidad finales. Presentamos RADIC-II, una arquitectura tolerante a fallos para paso de mensajes basada en la arquitectura RADIC (Redundant Array of Distributed Independent Fault Tolerance Controllers). RADIC-II mantiene al máximo posible las características de transparencia, descentralización, flexibilidad y escalabilidad existentes en RADIC, e incorpora una flexible funcionalidad de redundancia dinámica, que permite mitigar o evitar algunos efectos colaterales en la recuperación

    Algorithmic Based Fault Tolerance Applied to High Performance Computing

    Full text link
    We present a new approach to fault tolerance for High Performance Computing system. Our approach is based on a careful adaptation of the Algorithmic Based Fault Tolerance technique (Huang and Abraham, 1984) to the need of parallel distributed computation. We obtain a strongly scalable mechanism for fault tolerance. We can also detect and correct errors (bit-flip) on the fly of a computation. To assess the viability of our approach, we have developed a fault tolerant matrix-matrix multiplication subroutine and we propose some models to predict its running time. Our parallel fault-tolerant matrix-matrix multiplication scores 1.4 TFLOPS on 484 processors (cluster jacquard.nersc.gov) and returns a correct result while one process failure has happened. This represents 65% of the machine peak efficiency and less than 12% overhead with respect to the fastest failure-free implementation. We predict (and have observed) that, as we increase the processor count, the overhead of the fault tolerance drops significantly

    Asynchronous Validity Resolution in Sequentially Consistent Shared Virtual Memory

    Get PDF
    Shared Virtual Memory (SVM) is an effort to provide a mechanism for a distributed system, such as a cluster, to execute shared memory parallel programs. Unfortunately, SVM has performance problems due to its underlying distributed architecture. Recent developments have increased performance of SVM by reducing communication. Unfortunately this performance gain was only possible by increasing programming complexity and by restricting the types of programs allowed to execute in the system. Validity resolution is the process of resolving the validity of a memory object such as a page. Current SVM systems use synchronous or deferred validity resolution techniques in which user processing is blocked during the validity resolution process. This is the case even when resolving validity of false shared variables. False-sharing occurs when two or more processes access unrelated variables stored within the same shared block of memory and at least one of the processes is writing. False sharing unnecessarily reduces overall performance of SVM systems?because user processing is blocked during validity resolution although no actual data dependencies exist. This thesis presents Asynchronous Validity Resolution (AVR), a new approach to SVM which reduces the performance losses associated with false sharing while maintaining the ease of programming found with regular shared memory parallel programming methodology. Asynchronous validity resolution allows concurrent user process execution and data validity resolution. AVR is evaluated by com-paring performance of an application suite using both an AVR sequentially con-sistent SVM system and a traditional sequentially consistent (SC) SVM system. The results show that AVR can increase performance over traditional sequentially consistent SVM for programs which exhibit false sharing. Although AVR outperforms regular SC by as much as 26%, performance of AVR is dependent on the number of false-sharing vs. true-sharing accesses, the number of pages in the program’s working set, the amount of user computation that completes per page request, and the internodal round-trip message time in the system. Overall, the results show that AVR could be an important member of the arsenal of tools available to parallel programmers

    Consistent and efficient output-streams management in optimistic simulation platforms

    Get PDF
    Optimistic synchronization is considered an effective means for supporting Parallel Discrete Event Simulations. It relies on a speculative approach, where concurrent processes execute simulation events regardless of their safety, and consistency is ensured via proper rollback mechanisms, upon the a-posteriori detection of causal inconsistencies along the events' execution path. Interactions with the outside world (e.g. generation of output streams) are a well-known problem for rollback-based systems, since the outside world may have no notion of rollback. In this context, approaches for allowing the simulation modeler to generate consistent output rely on either the usage of ad-hoc APIs (which must be provided by the underlying simulation kernel) or temporary suspension of processing activities in order to wait for the final outcome (commit/rollback) associated with a speculatively-produced output. In this paper we present design indications and a reference implementation for an output streams' management subsystem which allows the simulation-model writer to rely on standard output-generation libraries (e.g. stdio) within code blocks associated with event processing. Further, the subsystem ensures that the produced output is consistent, namely associated with events that are eventually committed, and system-wide ordered along the simulation time axis. The above features jointly provide the illusion of a classical (simple to deal with) sequential programming model, which spares the developer from being aware that the simulation program is run concurrently and speculatively. We also show, via an experimental study, how the design/development optimizations we present lead to limited overhead, giving rise to the situation where the simulation run would have been carried out with near-to-zero or reduced output management cost. At the same time, the delay for materializing the output stream (making it available for any type of audit activity) is shown to be fairly limited and constant, especially for good mixtures of I/O-bound vs CPU-bound behaviors at the application level. Further, the whole output streams' management subsystem has been designed in order to provide scalability for I/O management on clusters. © 2013 ACM

    Parallel Discrete Event Simulation with Erlang

    Full text link
    Discrete Event Simulation (DES) is a widely used technique in which the state of the simulator is updated by events happening at discrete points in time (hence the name). DES is used to model and analyze many kinds of systems, including computer architectures, communication networks, street traffic, and others. Parallel and Distributed Simulation (PADS) aims at improving the efficiency of DES by partitioning the simulation model across multiple processing elements, in order to enabling larger and/or more detailed studies to be carried out. The interest on PADS is increasing since the widespread availability of multicore processors and affordable high performance computing clusters. However, designing parallel simulation models requires considerable expertise, the result being that PADS techniques are not as widespread as they could be. In this paper we describe ErlangTW, a parallel simulation middleware based on the Time Warp synchronization protocol. ErlangTW is entirely written in Erlang, a concurrent, functional programming language specifically targeted at building distributed systems. We argue that writing parallel simulation models in Erlang is considerably easier than using conventional programming languages. Moreover, ErlangTW allows simulation models to be executed either on single-core, multicore and distributed computing architectures. We describe the design and prototype implementation of ErlangTW, and report some preliminary performance results on multicore and distributed architectures using the well known PHOLD benchmark.Comment: Proceedings of ACM SIGPLAN Workshop on Functional High-Performance Computing (FHPC 2012) in conjunction with ICFP 2012. ISBN: 978-1-4503-1577-

    A fault-tolerance protocol for parallel applications with communication imbalance

    Get PDF
    ArticuloThe predicted failure rates of future supercomputers loom the groundbreaking research large machines are expected to foster. Therefore, resilient extreme-scale applications are an absolute necessity to effectively use the new generation of supercomputers. Rollback-recovery techniques have been traditionally used in HPC to provide resilience. Among those techniques, message logging provides the appealing features of saving energy, accelerating recovery, and having low performance penalty. Its increased memory consumption is, however, an important downside. This paper introduces memory-constrained message logging (MCML), a general framework for decreasing the memory footprint of message-logging protocols. In particular, we demonstrate the effectiveness of MCML in maintaining message logging feasible for applications with substantial communication imbalance. This type of applications appear in many scientific fields. We present experimental results with several parallel codes running on up to 4,096 cores. Using those results and an analytical model, we predict MCML can reduce execution time up to 25% and energy consumption up to 15%, at extreme scale

    Automated Application-level Checkpointing of MPI Programs

    Full text link
    Because of increasing hardware and software complexity, the running time of many computational science applications is now more than the mean-time-to-failure of high-performance computing platforms. Therefore, computational science applications need to tolerate hardware failures. In this paper, we focus on the stopping failure model in which a faulty process hangs and stops responding to the rest of the system. We argue that tolerating such faults is best done by an approach called application-level coordinated non-blocking checkpointing, and that existing fault-tolerance protocols in teh literature are not suitable for implementing this approach. In this paper, we present a suitable protocol, and show how it can be used with a precompiler that instruments C/MPI programs to save application and MPI library state. An advantage of our approach is that it is independent of the MPI implementation. We present experimental results that argue that the overhead of using our system can be small

    Transparent and efficient shared-state management for optimistic simulations on multi-core machines

    Get PDF
    Traditionally, Logical Processes (LPs) forming a simulation model store their execution information into disjoint simulations states, forcing events exchange to communicate data between each other. In this work we propose the design and implementation of an extension to the traditional Time Warp (optimistic) synchronization protocol for parallel/distributed simulation, targeted at shared-memory/multicore machines, allowing LPs to share parts of their simulation states by using global variables. In order to preserve optimism's intrinsic properties, global variables are transparently mapped to multi-version ones, so to avoid any form of safety predicate verification upon updates. Execution's consistency is ensured via the introduction of a new rollback scheme which is triggered upon the detection of an incorrect global variable's read. At the same time, efficiency in the execution is guaranteed by the exploitation of non-blocking algorithms in order to manage the multi-version variables' lists. Furthermore, our proposal is integrated with the simulation model's code through software instrumentation, in order to allow the application-level programmer to avoid using any specific API to mark or to inform the simulation kernel of updates to global variables. Thus we support full transparency. An assessment of our proposal, comparing it with a traditional message-passing implementation of variables' multi-version is provided as well. © 2012 IEEE
    • …
    corecore