3,064 research outputs found

    Characterization of well-posedness of piecewise linear systems

    Get PDF
    One of the basic issues in the study of hybrid systems is the well-posedness (existence and uniqueness of solutions) problem of discontinuous dynamical systems. The paper addresses this problem for a class of piecewise-linear discontinuous systems under the definition of solutions of Caratheodory. The concepts of jump solutions or of sliding modes are not considered here. In this sense, the problem to be discussed is one of the most basic problems in the study of well-posedness for discontinuous dynamical systems. First, we derive necessary and sufficient conditions for bimodal systems to be well-posed, in terms of an analysis based on lexicographic inequalities and the smooth continuation property of solutions. Next, its extensions to the multimodal case are discussed. As an application to switching control, in the case that two state feedback gains are switched according to a criterion depending on the state, we give a characterization of all admissible state feedback gains for which the closed loop system remains well-pose

    Saliency Based Control in Random Feature Networks

    Full text link
    The ability to rapidly focus attention and react to salient environmental features enables animals to move agiley through their habitats. To replicate this kind of high-performance control of movement in synthetic systems, we propose a new approach to feedback control that bases control actions on randomly perceived features. Connections will be made with recent work incorporating communication protocols into networked control systems. The concepts of {\em random channel controllability} and {\em random channel observability} for LTI control systems are introduced and studied.Comment: 9 pages, 2 figure

    Switching Control for Parameter Identifiability of Uncertain Systems

    Full text link
    This paper considers the problem of identifying the parameters of an uncertain linear system by means of feedback control. The problem is approached by considering time-varying controllers. It is shown that even when the uncertainty set is not finite, parameter identifiability can be generically ensured by switching among a finite number of linear time-invariant controllers. The results are shown to have several implications, ranging from fault detection and isolation to adaptive and supervisory control. Practical aspects of the problem are also discussed in details
    • …
    corecore