48,231 research outputs found

    Bag-Level Aggregation for Multiple Instance Active Learning in Instance Classification Problems

    Full text link
    A growing number of applications, e.g. video surveillance and medical image analysis, require training recognition systems from large amounts of weakly annotated data while some targeted interactions with a domain expert are allowed to improve the training process. In such cases, active learning (AL) can reduce labeling costs for training a classifier by querying the expert to provide the labels of most informative instances. This paper focuses on AL methods for instance classification problems in multiple instance learning (MIL), where data is arranged into sets, called bags, that are weakly labeled. Most AL methods focus on single instance learning problems. These methods are not suitable for MIL problems because they cannot account for the bag structure of data. In this paper, new methods for bag-level aggregation of instance informativeness are proposed for multiple instance active learning (MIAL). The \textit{aggregated informativeness} method identifies the most informative instances based on classifier uncertainty, and queries bags incorporating the most information. The other proposed method, called \textit{cluster-based aggregative sampling}, clusters data hierarchically in the instance space. The informativeness of instances is assessed by considering bag labels, inferred instance labels, and the proportion of labels that remain to be discovered in clusters. Both proposed methods significantly outperform reference methods in extensive experiments using benchmark data from several application domains. Results indicate that using an appropriate strategy to address MIAL problems yields a significant reduction in the number of queries needed to achieve the same level of performance as single instance AL methods

    DAMEWARE - Data Mining & Exploration Web Application Resource

    Get PDF
    Astronomy is undergoing through a methodological revolution triggered by an unprecedented wealth of complex and accurate data. DAMEWARE (DAta Mining & Exploration Web Application and REsource) is a general purpose, Web-based, Virtual Observatory compliant, distributed data mining framework specialized in massive data sets exploration with machine learning methods. We present the DAMEWARE (DAta Mining & Exploration Web Application REsource) which allows the scientific community to perform data mining and exploratory experiments on massive data sets, by using a simple web browser. DAMEWARE offers several tools which can be seen as working environments where to choose data analysis functionalities such as clustering, classification, regression, feature extraction etc., together with models and algorithms.Comment: User Manual of the DAMEWARE Web Application, 51 page

    Entropy-based active learning for object recognition

    Get PDF
    Most methods for learning object categories require large amounts of labeled training data. However, obtaining such data can be a difficult and time-consuming endeavor. We have developed a novel, entropy-based ldquoactive learningrdquo approach which makes significant progress towards this problem. The main idea is to sequentially acquire labeled data by presenting an oracle (the user) with unlabeled images that will be particularly informative when labeled. Active learning adaptively prioritizes the order in which the training examples are acquired, which, as shown by our experiments, can significantly reduce the overall number of training examples required to reach near-optimal performance. At first glance this may seem counter-intuitive: how can the algorithm know whether a group of unlabeled images will be informative, when, by definition, there is no label directly associated with any of the images? Our approach is based on choosing an image to label that maximizes the expected amount of information we gain about the set of unlabeled images. The technique is demonstrated in several contexts, including improving the efficiency of Web image-search queries and open-world visual learning by an autonomous agent. Experiments on a large set of 140 visual object categories taken directly from text-based Web image searches show that our technique can provide large improvements (up to 10 x reduction in the number of training examples needed) over baseline techniques

    Data-Driven Shape Analysis and Processing

    Full text link
    Data-driven methods play an increasingly important role in discovering geometric, structural, and semantic relationships between 3D shapes in collections, and applying this analysis to support intelligent modeling, editing, and visualization of geometric data. In contrast to traditional approaches, a key feature of data-driven approaches is that they aggregate information from a collection of shapes to improve the analysis and processing of individual shapes. In addition, they are able to learn models that reason about properties and relationships of shapes without relying on hard-coded rules or explicitly programmed instructions. We provide an overview of the main concepts and components of these techniques, and discuss their application to shape classification, segmentation, matching, reconstruction, modeling and exploration, as well as scene analysis and synthesis, through reviewing the literature and relating the existing works with both qualitative and numerical comparisons. We conclude our report with ideas that can inspire future research in data-driven shape analysis and processing.Comment: 10 pages, 19 figure
    corecore