13,095 research outputs found

    Adaptive Ranking Based Constraint Handling for Explicitly Constrained Black-Box Optimization

    Full text link
    A novel explicit constraint handling technique for the covariance matrix adaptation evolution strategy (CMA-ES) is proposed. The proposed constraint handling exhibits two invariance properties. One is the invariance to arbitrary element-wise increasing transformation of the objective and constraint functions. The other is the invariance to arbitrary affine transformation of the search space. The proposed technique virtually transforms a constrained optimization problem into an unconstrained optimization problem by considering an adaptive weighted sum of the ranking of the objective function values and the ranking of the constraint violations that are measured by the Mahalanobis distance between each candidate solution to its projection onto the boundary of the constraints. Simulation results are presented and show that the CMA-ES with the proposed constraint handling exhibits the affine invariance and performs similarly to the CMA-ES on unconstrained counterparts.Comment: 9 page

    Bayesian subset simulation

    Full text link
    We consider the problem of estimating a probability of failure α\alpha, defined as the volume of the excursion set of a function f:X⊆Rd→Rf:\mathbb{X} \subseteq \mathbb{R}^{d} \to \mathbb{R} above a given threshold, under a given probability measure on X\mathbb{X}. In this article, we combine the popular subset simulation algorithm (Au and Beck, Probab. Eng. Mech. 2001) and our sequential Bayesian approach for the estimation of a probability of failure (Bect, Ginsbourger, Li, Picheny and Vazquez, Stat. Comput. 2012). This makes it possible to estimate α\alpha when the number of evaluations of ff is very limited and α\alpha is very small. The resulting algorithm is called Bayesian subset simulation (BSS). A key idea, as in the subset simulation algorithm, is to estimate the probabilities of a sequence of excursion sets of ff above intermediate thresholds, using a sequential Monte Carlo (SMC) approach. A Gaussian process prior on ff is used to define the sequence of densities targeted by the SMC algorithm, and drive the selection of evaluation points of ff to estimate the intermediate probabilities. Adaptive procedures are proposed to determine the intermediate thresholds and the number of evaluations to be carried out at each stage of the algorithm. Numerical experiments illustrate that BSS achieves significant savings in the number of function evaluations with respect to other Monte Carlo approaches
    • …
    corecore