8,719 research outputs found

    Active Learning of Self-concordant like Multi-index Functions

    Get PDF
    We study the problem of actively learning a multi-index function of the form f (x) = g_0 (A_0 x) from its point evaluations, where A_0 ∈ R_{k×d} with k â‰Ș d. We build on the assumptions and techniques of an existing approach based on low-rank matrix recovery (Tyagi and Cevher, 2012). Specifically, by introducing an additional self- concordant like assumption on g_0 and adapting the sampling scheme and its analysis accordingly, we provide a bound on the sampling complexity with a weaker dependence on d in the presence of additive Gaussian sampling noise. For example, under natural assumptions on certain other parameters, the dependence decreases from O(d^3/2) to O(d^3/4)

    Structured Sparsity: Discrete and Convex approaches

    Full text link
    Compressive sensing (CS) exploits sparsity to recover sparse or compressible signals from dimensionality reducing, non-adaptive sensing mechanisms. Sparsity is also used to enhance interpretability in machine learning and statistics applications: While the ambient dimension is vast in modern data analysis problems, the relevant information therein typically resides in a much lower dimensional space. However, many solutions proposed nowadays do not leverage the true underlying structure. Recent results in CS extend the simple sparsity idea to more sophisticated {\em structured} sparsity models, which describe the interdependency between the nonzero components of a signal, allowing to increase the interpretability of the results and lead to better recovery performance. In order to better understand the impact of structured sparsity, in this chapter we analyze the connections between the discrete models and their convex relaxations, highlighting their relative advantages. We start with the general group sparse model and then elaborate on two important special cases: the dispersive and the hierarchical models. For each, we present the models in their discrete nature, discuss how to solve the ensuing discrete problems and then describe convex relaxations. We also consider more general structures as defined by set functions and present their convex proxies. Further, we discuss efficient optimization solutions for structured sparsity problems and illustrate structured sparsity in action via three applications.Comment: 30 pages, 18 figure

    Co-adaptive control strategies in assistive Brain-Machine Interfaces

    Get PDF
    A large number of people with severe motor disabilities cannot access any of the available control inputs of current assistive products, which typically rely on residual motor functions. These patients are therefore unable to fully benefit from existent assistive technologies, including communication interfaces and assistive robotics. In this context, electroencephalography-based Brain-Machine Interfaces (BMIs) offer a potential non-invasive solution to exploit a non-muscular channel for communication and control of assistive robotic devices, such as a wheelchair, a telepresence robot, or a neuroprosthesis. Still, non-invasive BMIs currently suffer from limitations, such as lack of precision, robustness and comfort, which prevent their practical implementation in assistive technologies. The goal of this PhD research is to produce scientific and technical developments to advance the state of the art of assistive interfaces and service robotics based on BMI paradigms. Two main research paths to the design of effective control strategies were considered in this project. The first one is the design of hybrid systems, based on the combination of the BMI together with gaze control, which is a long-lasting motor function in many paralyzed patients. Such approach allows to increase the degrees of freedom available for the control. The second approach consists in the inclusion of adaptive techniques into the BMI design. This allows to transform robotic tools and devices into active assistants able to co-evolve with the user, and learn new rules of behavior to solve tasks, rather than passively executing external commands. Following these strategies, the contributions of this work can be categorized based on the typology of mental signal exploited for the control. These include: 1) the use of active signals for the development and implementation of hybrid eyetracking and BMI control policies, for both communication and control of robotic systems; 2) the exploitation of passive mental processes to increase the adaptability of an autonomous controller to the user\u2019s intention and psychophysiological state, in a reinforcement learning framework; 3) the integration of brain active and passive control signals, to achieve adaptation within the BMI architecture at the level of feature extraction and classification

    Understanding Trading Behavior in 401(k) Plans

    Get PDF
    We use a new database covering 1.2 million active participants to study trading activities in 1,530 defined contribution retirement plans. Descriptive statistics and regression analysis indicate some interesting trading patterns. First, we show that trading activity in 401(k) accounts is very limited: only 20% of participants ever reshuffled their portfolios in two years. Second, demographic characteristics are strongly associated with trading activities: traders are older, wealthier, more highly paid, male employees with longer plan tenure. Finally, we find that plan design factors, such as the number of funds offered, loan availability, and specific fund-families offered have significant impacts on 401(k) plan participants’ trading behavior. Moreover, on-line access channels stimulate participants to trade more frequently, although they do not increase turnover ratio as much. We conclude that plan design features are crucial in sharing trading patterns in 401(k) plans.
    • 

    corecore