8,474 research outputs found

    Continuous-variable quantum neural networks

    Full text link
    We introduce a general method for building neural networks on quantum computers. The quantum neural network is a variational quantum circuit built in the continuous-variable (CV) architecture, which encodes quantum information in continuous degrees of freedom such as the amplitudes of the electromagnetic field. This circuit contains a layered structure of continuously parameterized gates which is universal for CV quantum computation. Affine transformations and nonlinear activation functions, two key elements in neural networks, are enacted in the quantum network using Gaussian and non-Gaussian gates, respectively. The non-Gaussian gates provide both the nonlinearity and the universality of the model. Due to the structure of the CV model, the CV quantum neural network can encode highly nonlinear transformations while remaining completely unitary. We show how a classical network can be embedded into the quantum formalism and propose quantum versions of various specialized model such as convolutional, recurrent, and residual networks. Finally, we present numerous modeling experiments built with the Strawberry Fields software library. These experiments, including a classifier for fraud detection, a network which generates Tetris images, and a hybrid classical-quantum autoencoder, demonstrate the capability and adaptability of CV quantum neural networks

    Deep reinforcement learning for robust quantum optimization

    Full text link
    Machine learning techniques based on artificial neural networks have been successfully applied to solve many problems in science. One of the most interesting domains of machine learning, reinforcement learning, has natural applicability for optimization problems in physics. In this work we use deep reinforcement learning and Chopped Random Basis optimization, to solve an optimization problem based on the insertion of an off-center barrier in a quantum Szilard engine. We show that using designed protocols for the time dependence of the barrier strength, we can achieve an equal splitting of the wave function (1/2 probability to find the particle on either side of the barrier) even for an asymmetric Szilard engine in such a way that no information is lost when measuring which side the particle is found. This implies that the asymmetric non-adiabatic Szilard engine can operate with the same efficiency as the traditional Szilard engine, with adiabatic insertion of a central barrier. We compare the two optimization methods, and demonstrate the advantage of reinforcement learning when it comes to constructing robust and noise-resistant protocols.Comment: 9 pages, 8 figure

    Advances in quantum machine learning

    Get PDF
    Here we discuss advances in the field of quantum machine learning. The following document offers a hybrid discussion; both reviewing the field as it is currently, and suggesting directions for further research. We include both algorithms and experimental implementations in the discussion. The field's outlook is generally positive, showing significant promise. However, we believe there are appreciable hurdles to overcome before one can claim that it is a primary application of quantum computation.Comment: 38 pages, 17 Figure

    Brain-inspired conscious computing architecture

    Get PDF
    What type of artificial systems will claim to be conscious and will claim to experience qualia? The ability to comment upon physical states of a brain-like dynamical system coupled with its environment seems to be sufficient to make claims. The flow of internal states in such system, guided and limited by associative memory, is similar to the stream of consciousness. Minimal requirements for an artificial system that will claim to be conscious were given in form of specific architecture named articon. Nonverbal discrimination of the working memory states of the articon gives it the ability to experience different qualities of internal states. Analysis of the inner state flows of such a system during typical behavioral process shows that qualia are inseparable from perception and action. The role of consciousness in learning of skills, when conscious information processing is replaced by subconscious, is elucidated. Arguments confirming that phenomenal experience is a result of cognitive processes are presented. Possible philosophical objections based on the Chinese room and other arguments are discussed, but they are insufficient to refute claims articon’s claims. Conditions for genuine understanding that go beyond the Turing test are presented. Articons may fulfill such conditions and in principle the structure of their experiences may be arbitrarily close to human

    Projective simulation for artificial intelligence

    Get PDF
    We propose a model of a learning agent whose interaction with the environment is governed by a simulation-based projection, which allows the agent to project itself into future situations before it takes real action. Projective simulation is based on a random walk through a network of clips, which are elementary patches of episodic memory. The network of clips changes dynamically, both due to new perceptual input and due to certain compositional principles of the simulation process. During simulation, the clips are screened for specific features which trigger factual action of the agent. The scheme is different from other, computational, notions of simulation, and it provides a new element in an embodied cognitive science approach to intelligent action and learning. Our model provides a natural route for generalization to quantum-mechanical operation and connects the fields of reinforcement learning and quantum computation.Comment: 22 pages, 18 figures. Close to published version, with footnotes retaine
    • …
    corecore