49,977 research outputs found

    Active learning and search on low-rank matrices

    Full text link
    Collaborative prediction is a powerful technique, useful in domains from recommender systems to guiding the scien-tific discovery process. Low-rank matrix factorization is one of the most powerful tools for collaborative prediction. This work presents a general approach for active collabora-tive prediction with the Probabilistic Matrix Factorization model. Using variational approximations or Markov chain Monte Carlo sampling to estimate the posterior distribution over models, we can choose query points to maximize our un-derstanding of the model, to best predict unknown elements of the data matrix, or to find as many “positive ” data points as possible. We evaluate our methods on simulated data, and also show their applicability to movie ratings prediction and the discovery of drug-target interactions

    Adaptive Matrix Completion for the Users and the Items in Tail

    Full text link
    Recommender systems are widely used to recommend the most appealing items to users. These recommendations can be generated by applying collaborative filtering methods. The low-rank matrix completion method is the state-of-the-art collaborative filtering method. In this work, we show that the skewed distribution of ratings in the user-item rating matrix of real-world datasets affects the accuracy of matrix-completion-based approaches. Also, we show that the number of ratings that an item or a user has positively correlates with the ability of low-rank matrix-completion-based approaches to predict the ratings for the item or the user accurately. Furthermore, we use these insights to develop four matrix completion-based approaches, i.e., Frequency Adaptive Rating Prediction (FARP), Truncated Matrix Factorization (TMF), Truncated Matrix Factorization with Dropout (TMF + Dropout) and Inverse Frequency Weighted Matrix Factorization (IFWMF), that outperforms traditional matrix-completion-based approaches for the users and the items with few ratings in the user-item rating matrix.Comment: 7 pages, 3 figures, ACM WWW'1

    Scalable and Sustainable Deep Learning via Randomized Hashing

    Full text link
    Current deep learning architectures are growing larger in order to learn from complex datasets. These architectures require giant matrix multiplication operations to train millions of parameters. Conversely, there is another growing trend to bring deep learning to low-power, embedded devices. The matrix operations, associated with both training and testing of deep networks, are very expensive from a computational and energy standpoint. We present a novel hashing based technique to drastically reduce the amount of computation needed to train and test deep networks. Our approach combines recent ideas from adaptive dropouts and randomized hashing for maximum inner product search to select the nodes with the highest activation efficiently. Our new algorithm for deep learning reduces the overall computational cost of forward and back-propagation by operating on significantly fewer (sparse) nodes. As a consequence, our algorithm uses only 5% of the total multiplications, while keeping on average within 1% of the accuracy of the original model. A unique property of the proposed hashing based back-propagation is that the updates are always sparse. Due to the sparse gradient updates, our algorithm is ideally suited for asynchronous and parallel training leading to near linear speedup with increasing number of cores. We demonstrate the scalability and sustainability (energy efficiency) of our proposed algorithm via rigorous experimental evaluations on several real datasets

    DMFSGD: A Decentralized Matrix Factorization Algorithm for Network Distance Prediction

    Full text link
    The knowledge of end-to-end network distances is essential to many Internet applications. As active probing of all pairwise distances is infeasible in large-scale networks, a natural idea is to measure a few pairs and to predict the other ones without actually measuring them. This paper formulates the distance prediction problem as matrix completion where unknown entries of an incomplete matrix of pairwise distances are to be predicted. The problem is solvable because strong correlations among network distances exist and cause the constructed distance matrix to be low rank. The new formulation circumvents the well-known drawbacks of existing approaches based on Euclidean embedding. A new algorithm, so-called Decentralized Matrix Factorization by Stochastic Gradient Descent (DMFSGD), is proposed to solve the network distance prediction problem. By letting network nodes exchange messages with each other, the algorithm is fully decentralized and only requires each node to collect and to process local measurements, with neither explicit matrix constructions nor special nodes such as landmarks and central servers. In addition, we compared comprehensively matrix factorization and Euclidean embedding to demonstrate the suitability of the former on network distance prediction. We further studied the incorporation of a robust loss function and of non-negativity constraints. Extensive experiments on various publicly-available datasets of network delays show not only the scalability and the accuracy of our approach but also its usability in real Internet applications.Comment: submitted to IEEE/ACM Transactions on Networking on Nov. 201

    The Incremental Multiresolution Matrix Factorization Algorithm

    Full text link
    Multiresolution analysis and matrix factorization are foundational tools in computer vision. In this work, we study the interface between these two distinct topics and obtain techniques to uncover hierarchical block structure in symmetric matrices -- an important aspect in the success of many vision problems. Our new algorithm, the incremental multiresolution matrix factorization, uncovers such structure one feature at a time, and hence scales well to large matrices. We describe how this multiscale analysis goes much farther than what a direct global factorization of the data can identify. We evaluate the efficacy of the resulting factorizations for relative leveraging within regression tasks using medical imaging data. We also use the factorization on representations learned by popular deep networks, providing evidence of their ability to infer semantic relationships even when they are not explicitly trained to do so. We show that this algorithm can be used as an exploratory tool to improve the network architecture, and within numerous other settings in vision.Comment: Computer Vision and Pattern Recognition (CVPR) 2017, 10 page

    On Quasi-Newton Forward--Backward Splitting: Proximal Calculus and Convergence

    Get PDF
    We introduce a framework for quasi-Newton forward--backward splitting algorithms (proximal quasi-Newton methods) with a metric induced by diagonal ±\pm rank-rr symmetric positive definite matrices. This special type of metric allows for a highly efficient evaluation of the proximal mapping. The key to this efficiency is a general proximal calculus in the new metric. By using duality, formulas are derived that relate the proximal mapping in a rank-rr modified metric to the original metric. We also describe efficient implementations of the proximity calculation for a large class of functions; the implementations exploit the piece-wise linear nature of the dual problem. Then, we apply these results to acceleration of composite convex minimization problems, which leads to elegant quasi-Newton methods for which we prove convergence. The algorithm is tested on several numerical examples and compared to a comprehensive list of alternatives in the literature. Our quasi-Newton splitting algorithm with the prescribed metric compares favorably against state-of-the-art. The algorithm has extensive applications including signal processing, sparse recovery, machine learning and classification to name a few.Comment: arXiv admin note: text overlap with arXiv:1206.115
    corecore