377 research outputs found

    CDMA overlay situations for microcellular mobile communications

    Get PDF
    Direct sequence code division multiple access communications is a promising approach to cellular mobile communications, which operates in an environment characterized by multipath Rician fading. In this paper, the CDMA network is assumed to share common spectrum with a narrowband microwave user. Because of the presence of the narrowband waveform, an interference suppression filter at each CDMA receiver is employed to reject the narrowband interference. The problem of interference from adjacent cells is also considered. Average power control is assumed to combat the near/far problem, and multipath diversity, in conjunction with simple interleaved channel coding, is considered for improving the performance of the CDMA system.published_or_final_versio

    On the use of a suppression filter for CDMA overlay

    Get PDF
    This paper is concerned with a direct-sequence code-division multiple-access (DS-CDMA) system operating over a Rayleigh fading channel and sharing a common spectrum with a narrow-band waveform. A suppression filter at the receiver is employed to reduce the narrow-band interference. We evaluate the average up-link bit error rate (BER) performance and investigate how the performance is influenced by various parameters, such as the number of taps of the suppression filter, the number of multiple-access users, the ratio of narrow-band interference bandwidth to the spread-spectrum bandwidth, the interference power to signal power ratio, the ratio of the offset of the interference carrier frequency from the spread-spectrum carrier frequency to the half spread-spectrum signal bandwidth, and so on.published_or_final_versio

    Adaptive LMS filters for cellular CDMA overlay situations

    Get PDF
    This paper extends and complements previous research we have performed on the performance of nonadaptive narrowband suppression filters when used in cellular code-division multiple-access (CDMA) overlay situations. An adaptive least mean square (LMS) filter is applied to a cellular CDMA overlay in order to reject narrowband interference. An accurate expression for the steady-state tap-weight covariance matrix is derived for the real LMS algorithm for arbitrary statistics of the overlaid interference. Numerical results illustrate that when the ratio of the narrowband interference bandwidth to the spread spectrum bandwidth is small, the LMS filter is very effective in rejecting the narrowband interference. Furthermore, it is seen that the performance of the LMS filter in a CDMA overlay environment is not significantly worse than the performance of an ideal Wiener filter, assuming the LMS filter has had sufficient time to converge.published_or_final_versio

    Adaptive IIR Filters for Single Interference Suppression in a BPSK DS CDMA System In Rayleigh Fading Channel

    Get PDF
    In this paper, effect of a single narrow-band interference (NBI) on bit error rate (BER) performance for a binary phase shift  keying  (BPSK)  synchronous  direct-sequence  code-division  multiple  access  (DS  CDMA)  communication system operating  in  a  frequency  nonselective  Rayleigh  fading  channel  is  analyzed.  Second-order  adaptive  infinite  impulse response  (IIR)  notch  filters  with  plain  gradient  algorithm  (GA)  for  suppression  of  NBI  in  the  DS  CDMA system  are proposed. A general closed-form BER expression for the DS CDMA system with NBI suppression second order adaptive IIR  notch  filters  is  derived  based  on  the  standard Gaussian  approximation  (SGA)  method.  BER  expressions  are  then derived  for  the  allpass  filter-based  adaptive  IIR  notch  filter  and  adaptive  IIR  notch  filter  with  constrained  poles  and zeros,  the  two  structures  that  are  commonly  found  in  literature.  It  is  observed  that  both  adaptive  IIR  notch  filter structures  exhibit  comparable  BER  performance.  Extensive  computer  simulation  results  are  presented  to verify  the accuracy and limitations of the analysis

    LMS filters for cellular CDMA overlay

    Get PDF
    This paper extends and complements previous research we have performed on the performance of nonadaptive narrowband suppression filters when used in cellular CDMA overlay situations. In this paper, an adaptive LMS filter is applied to cellular CDMA overlay situations in order to reject narrowband interference.published_or_final_versio

    Adaptive space-time processing for digital mobile radio communication systems

    Get PDF
    The performance of digital mobile radio communication systems is primarily limited by cochannel interference and multipath fading. Antenna arrays, with optimum combining (OC), have been shown to combat multipath fading of the desired signal and are capable of reducing the power of interfering signals at the receiver through spatial filtering. With OC, the signals received by several antenna elements are weighted and combined to maximize the output signal-to-interference-plus-noise ratio (SLNR). We derive new closed-form expressions for (1) the probability density function (PDF) of the SINR at the output of the optimum combiner, (2) the average probability of bit error rate (BER) and its upper bound, and (3) the outage probability in a Rayleigh fading environment with multiple cochannel interferers. The study covers both the case when the number of antenna elements exceeds the number of interferers and vice versa. We consider independent fading at each antenna element, as well as the effect of fading correlation. The analysis is also extended to processing using maximal ratio combining (MRC). The performance of the optimum combiner is compared to that of the maximal ratio combiner and results show that OC performs significantly better than MRC. We investigate the performance of OC in a microcellular environment where the desired signal and the cochannel interference can have different statistical characteristics. The desired signal is assumed to have Rician statistics implying that a dominant multipath reflection or a line-of-sight (LOS) propagation exists within-cell transmission. Interfering signals from cochannel cells are assumed to be subject to Rayleigh fading due to the absence of LOS propagation. This is the so called Rician/Rayleigh model. We also study OC for a special case of the Rician/Rayleigh model, the Nonfading/Rayleigh model. We derive expressions for the PDF of the SJNR, the BER and the outage probability for both Rician/Rayleigh and Nonfading/Rayleigh models. Similar expressions are derived with MRC. Another area in which space-time processing may provide significant benefits is when wideband signals (such as code division multiple access (CDMA) signals) are overlaid on existing narrowband user signals. The conventional approach of rejecting narrowband interference in direct-sequence (DS) CDMA systems has been to sample the received signal at the chip interval, and to exploit the high correlation between the interference samples prior to spread spectrum demodulation. A different approach is space-time processing. We study two space-time receiver architectures, referred to as cascade and joint, respectively, and evaluate the performance of a DS-CDMA signal overlaying a narrowband signal for personal communication systems (PCS). We define aild evaluate the asymptotic efficiency of each configuration. We develop new closed-form expressions for the PDF of the SINR at the array output, the BER and its upper bound, for both cascade and joint configurations. We also analyze the performance of this system in the presence of multiple access interference (MAJ)

    Erlang capacity of ATM-based CDMA satellite system

    Full text link

    Hybrid Overlay/Underlay Cognitive Radio Network with MC-CDMA

    Get PDF
    • …
    corecore