1,052 research outputs found

    Active inference, sensory attenuation and illusions.

    Get PDF
    Active inference provides a simple and neurobiologically plausible account of how action and perception are coupled in producing (Bayes) optimal behaviour. This can be seen most easily as minimising prediction error: we can either change our predictions to explain sensory input through perception. Alternatively, we can actively change sensory input to fulfil our predictions. In active inference, this action is mediated by classical reflex arcs that minimise proprioceptive prediction error created by descending proprioceptive predictions. However, this creates a conflict between action and perception; in that, self-generated movements require predictions to override the sensory evidence that one is not actually moving. However, ignoring sensory evidence means that externally generated sensations will not be perceived. Conversely, attending to (proprioceptive and somatosensory) sensations enables the detection of externally generated events but precludes generation of actions. This conflict can be resolved by attenuating the precision of sensory evidence during movement or, equivalently, attending away from the consequences of self-made acts. We propose that this Bayes optimal withdrawal of precise sensory evidence during movement is the cause of psychophysical sensory attenuation. Furthermore, it explains the force-matching illusion and reproduces empirical results almost exactly. Finally, if attenuation is removed, the force-matching illusion disappears and false (delusional) inferences about agency emerge. This is important, given the negative correlation between sensory attenuation and delusional beliefs in normal subjects--and the reduction in the magnitude of the illusion in schizophrenia. Active inference therefore links the neuromodulatory optimisation of precision to sensory attenuation and illusory phenomena during the attribution of agency in normal subjects. It also provides a functional account of deficits in syndromes characterised by false inference and impaired movement--like schizophrenia and Parkinsonism--syndromes that implicate abnormal modulatory neurotransmission

    Interoceptive inference, emotion, and the embodied self

    Get PDF
    The concept of the brain as a prediction machine has enjoyed a resurgence in the context of the Bayesian brain and predictive coding approaches within cognitive science. To date, this perspective has been applied primarily to exteroceptive perception (e.g., vision, audition), and action. Here, I describe a predictive, inferential perspective on interoception: ‘interoceptive inference’ conceives of subjective feeling states (emotions) as arising from actively-inferred generative (predictive) models of the causes of interoceptive afferents. The model generalizes ‘appraisal’ theories that view emotions as emerging from cognitive evaluations of physiological changes, and it sheds new light on the neurocognitive mechanisms that underlie the experience of body ownership and conscious selfhood in health and in neuropsychiatric illness

    Embodied Precision : Intranasal Oxytocin Modulates Multisensory Integration

    Get PDF
    © 2018 Massachusetts Institute of Technology.Multisensory integration processes are fundamental to our sense of self as embodied beings. Bodily illusions, such as the rubber hand illusion (RHI) and the size-weight illusion (SWI), allow us to investigate how the brain resolves conflicting multisensory evidence during perceptual inference in relation to different facets of body representation. In the RHI, synchronous tactile stimulation of a participant's hidden hand and a visible rubber hand creates illusory body ownership; in the SWI, the perceived size of the body can modulate the estimated weight of external objects. According to Bayesian models, such illusions arise as an attempt to explain the causes of multisensory perception and may reflect the attenuation of somatosensory precision, which is required to resolve perceptual hypotheses about conflicting multisensory input. Recent hypotheses propose that the precision of sensorimotor representations is determined by modulators of synaptic gain, like dopamine, acetylcholine, and oxytocin. However, these neuromodulatory hypotheses have not been tested in the context of embodied multisensory integration. The present, double-blind, placebo-controlled, crossover study ( N = 41 healthy volunteers) aimed to investigate the effect of intranasal oxytocin (IN-OT) on multisensory integration processes, tested by means of the RHI and the SWI. Results showed that IN-OT enhanced the subjective feeling of ownership in the RHI, only when synchronous tactile stimulation was involved. Furthermore, IN-OT increased an embodied version of the SWI (quantified as estimation error during a weight estimation task). These findings suggest that oxytocin might modulate processes of visuotactile multisensory integration by increasing the precision of top-down signals against bottom-up sensory input.Peer reviewedFinal Accepted Versio

    An aberrant precision account of autism.

    Get PDF
    Autism is a neurodevelopmental disorder characterized by problems with social-communication, restricted interests and repetitive behavior. A recent and thought-provoking article presented a normative explanation for the perceptual symptoms of autism in terms of a failure of Bayesian inference (Pellicano and Burr, 2012). In response, we suggested that when Bayesian inference is grounded in its neural instantiation-namely, predictive coding-many features of autistic perception can be attributed to aberrant precision (or beliefs about precision) within the context of hierarchical message passing in the brain (Friston et al., 2013). Here, we unpack the aberrant precision account of autism. Specifically, we consider how empirical findings-that speak directly or indirectly to neurobiological mechanisms-are consistent with the aberrant encoding of precision in autism; in particular, an imbalance of the precision ascribed to sensory evidence relative to prior beliefs

    The cybernetic Bayesian brain: from interoceptive inference to sensorimotor contingencies

    Get PDF
    Is there a single principle by which neural operations can account for perception, cognition, action, and even consciousness? A strong candidate is now taking shape in the form of “predictive processing”. On this theory, brains engage in predictive inference on the causes of sensory inputs by continuous minimization of prediction errors or informational “free energy”. Predictive processing can account, supposedly, not only for perception, but also for action and for the essential contribution of the body and environment in structuring sensorimotor interactions. In this paper I draw together some recent developments within predictive processing that involve predictive modelling of internal physiological states (interoceptive inference), and integration with “enactive” and “embodied” approaches to cognitive science (predictive perception of sensorimotor contingencies). The upshot is a development of predictive processing that originates, not in Helmholtzian perception-as-inference, but rather in 20th-century cybernetic principles that emphasized homeostasis and predictive control. This way of thinking leads to (i) a new view of emotion as active interoceptive inference; (ii) a common predictive framework linking experiences of body ownership, emotion, and exteroceptive perception; (iii) distinct interpretations of active inference as involving disruptive and disambiguatory—not just confirmatory—actions to test perceptual hypotheses; (iv) a neurocognitive operationalization of the “mastery of sensorimotor contingencies” (where sensorimotor contingencies reflect the rules governing sensory changes produced by various actions); and (v) an account of the sense of subjective reality of perceptual contents (“perceptual presence”) in terms of the extent to which predictive models encode potential sensorimotor relations (this being “counterfactual richness”). This is rich and varied territory, and surveying its landmarks emphasizes the need for experimental tests of its key contributions

    Sense of Agency and Its Disruption

    Get PDF
    Sense of agency—the feeling of being the author of one’s actions—may be a critical component of one’s sense of self and of one’s interaction with the world. Insights from clinical and experimental neuropsychology, as well as cognitive and computational neuroscience, have provided complementary evidence that the sense of agency arises from the integration of an array of internal and external cues. These frameworks can help to explain how disruptions in one or more of these cues may result in altered experiences of agency. This chapter reviews these explanatory frameworks and shows how important and useful they have become in making sense of an array of clinical observations, from the disorders of control and agency that result from circumscribed brain damage to the widespread attenuation of agency that may characterize psychosis in which no clear brain lesion has been identified

    Computational psychiatry: from synapses to sentience

    Get PDF
    This review considers computational psychiatry from a particular viewpoint: namely, a commitment to explaining psychopathology in terms of pathophysiology. It rests on the notion of a generative model as underwriting (i) sentient processing in the brain, and (ii) the scientific process in psychiatry. The story starts with a view of the brain-from cognitive and computational neuroscience-as an organ of inference and prediction. This offers a formal description of neuronal message passing, distributed processing and belief propagation in neuronal networks; and how certain kinds of dysconnection lead to aberrant belief updating and false inference. The dysconnections in question can be read as a pernicious synaptopathy that fits comfortably with formal notions of how we-or our brains-encode uncertainty or its complement, precision. It then considers how the ensuing process theories are tested empirically, with an emphasis on the computational modelling of neuronal circuits and synaptic gain control that mediates attentional set, active inference, learning and planning. The opportunities afforded by this sort of modelling are considered in light of in silico experiments; namely, computational neuropsychology, computational phenotyping and the promises of a computational nosology for psychiatry. The resulting survey of computational approaches is not scholarly or exhaustive. Rather, its aim is to review a theoretical narrative that is emerging across subdisciplines within psychiatry and empirical scales of investigation. These range from epilepsy research to neurodegenerative disorders; from post-traumatic stress disorder to the management of chronic pain, from schizophrenia to functional medical symptoms

    Active interoceptive inference and the emotional brain

    Get PDF
    We review a recent shift in conceptions of interoception and its relationship to hierarchical inference in the brain. The notion of interoceptive inference means that bodily states are regulated by autonomic reflexes that are enslaved by descending predictions from deep generative models of our internal and external milieu. This re-conceptualization illuminates several issues in cognitive and clinical neuroscience with implications for experiences of selfhood and emotion. We first contextualize interoception in terms of active (Bayesian) inference in the brain, highlighting its enactivist (embodied) aspects. We then consider the key role of uncertainty or precision and how this might translate into neuromodulation. We next examine the implications for understanding the functional anatomy of the emotional brain, surveying recent observations on agranular cortex. Finally, we turn to theoretical issues, namely, the role of interoception in shaping a sense of embodied self and feelings. We will draw links between physiological homoeostasis and allostasis, early cybernetic ideas of predictive control and hierarchical generative models in predictive processing. The explanatory scope of interoceptive inference ranges from explanations for autism and depression, through to consciousness. We offer a brief survey of these exciting developments

    Computational psychosomatics and computational psychiatry: toward a joint framework for differential diagnosis

    Get PDF
    This article outlines how a core concept from theories of homeostasis and cybernetics, the inference-control loop, may be used to guide differential diagnosis in computational psychiatry and computational psychosomatics. In particular, we discuss 1) how conceptualizing perception and action as inference-control loops yields a joint computational perspective on brain-world and brain-body interactions and 2) how the concrete formulation of this loop as a hierarchical Bayesian model points to key computational quantities that inform a taxonomy of potential disease mechanisms. We consider the utility of this perspective for differential diagnosis in concrete clinical applications

    Knowing when to stop: Aberrant precision and evidence accumulation in schizophrenia

    Get PDF
    Predictive coding and active inference formulations of the dysconnection hypothesis suggest that subjects with schizophrenia (SZ) hold unduly precise prior beliefs to compensate for a failure of sensory attenuation. This implies that SZ subjects should both initiate responses prematurely during evidence-accumulation tasks and fail to inhibit their responses at long stop-signal delays. SZ and healthy control subjects were asked to report the timing of billiards-ball collisions and were occasionally required to withhold their responses. SZ subjects showed larger temporal estimation errors, which were associated with premature responses and decreased response inhibition. To account for these effects, we used hierarchical (Bayesian) drift-diffusion models (HDDM) and model selection procedures to adjudicate among four hypotheses. HDDM revealed that the precision of prior beliefs (i.e., starting point) rather than increased sensory precision (i.e., drift rate) drove premature responses and impaired response inhibition in patients with SZ. From the perspective of active inference, we suggest that premature predictions in SZ are responses that, heuristically, are traded off against accuracy to ensure action execution. On the basis of previous work, we suggest that the right insular cortex might mediate this trade-off
    corecore