460 research outputs found

    Image processing for plastic surgery planning

    Get PDF
    This thesis presents some image processing tools for plastic surgery planning. In particular, it presents a novel method that combines local and global context in a probabilistic relaxation framework to identify cephalometric landmarks used in Maxillofacial plastic surgery. It also uses a method that utilises global and local symmetry to identify abnormalities in CT frontal images of the human body. The proposed methodologies are evaluated with the help of several clinical data supplied by collaborating plastic surgeons

    Inferring Geodesic Cerebrovascular Graphs: Image Processing, Topological Alignment and Biomarkers Extraction

    Get PDF
    A vectorial representation of the vascular network that embodies quantitative features - location, direction, scale, and bifurcations - has many potential neuro-vascular applications. Patient-specific models support computer-assisted surgical procedures in neurovascular interventions, while analyses on multiple subjects are essential for group-level studies on which clinical prediction and therapeutic inference ultimately depend. This first motivated the development of a variety of methods to segment the cerebrovascular system. Nonetheless, a number of limitations, ranging from data-driven inhomogeneities, the anatomical intra- and inter-subject variability, the lack of exhaustive ground-truth, the need for operator-dependent processing pipelines, and the highly non-linear vascular domain, still make the automatic inference of the cerebrovascular topology an open problem. In this thesis, brain vessels’ topology is inferred by focusing on their connectedness. With a novel framework, the brain vasculature is recovered from 3D angiographies by solving a connectivity-optimised anisotropic level-set over a voxel-wise tensor field representing the orientation of the underlying vasculature. Assuming vessels joining by minimal paths, a connectivity paradigm is formulated to automatically determine the vascular topology as an over-connected geodesic graph. Ultimately, deep-brain vascular structures are extracted with geodesic minimum spanning trees. The inferred topologies are then aligned with similar ones for labelling and propagating information over a non-linear vectorial domain, where the branching pattern of a set of vessels transcends a subject-specific quantized grid. Using a multi-source embedding of a vascular graph, the pairwise registration of topologies is performed with the state-of-the-art graph matching techniques employed in computer vision. Functional biomarkers are determined over the neurovascular graphs with two complementary approaches. Efficient approximations of blood flow and pressure drop account for autoregulation and compensation mechanisms in the whole network in presence of perturbations, using lumped-parameters analog-equivalents from clinical angiographies. Also, a localised NURBS-based parametrisation of bifurcations is introduced to model fluid-solid interactions by means of hemodynamic simulations using an isogeometric analysis framework, where both geometry and solution profile at the interface share the same homogeneous domain. Experimental results on synthetic and clinical angiographies validated the proposed formulations. Perspectives and future works are discussed for the group-wise alignment of cerebrovascular topologies over a population, towards defining cerebrovascular atlases, and for further topological optimisation strategies and risk prediction models for therapeutic inference. Most of the algorithms presented in this work are available as part of the open-source package VTrails

    Statistical methods for segmenting X-ray CT images of sheep

    Get PDF

    Feature-Based Correspondences to Infer the Location of Anatomical Landmarks

    Get PDF
    A methodology has been developed for automatically determining inter-image correspondences between cliques of features extracted from a reference and a query image. Cliques consist of up to threefeatures and correspondences between them are determined via a hierarchy of similarity metrics based on the inherent properties of the features and geometric relationships between those features. As opposed to approaches that determine correspondences solely by voxel intensity, features that also include shape description are used. Specifically, medial-based features areemployed because they are sparse compared to the number of image voxels and can be automatically extracted from the image.The correspondence framework has been extended to automatically estimate the location of anatomical landmarks in the query image by adding landmarks to the cliques. Anatomical landmark locationsare then inferred from the reference image by maximizing landmark correspondences. The ability to infer landmark locations has provided a means to validate the correspondence framework in thepresence of structural variation between images. Moreover, automated landmark estimation imparts the user with anatomical information and can hypothetically be used to initialize andconstrain the search space of segmentation and registration methods.Methods developed in this dissertation were applied to simulated MRI brain images, synthetic images, and images constructed from several variations of a parametric model. Results indicate that the methods are invariant to global translation and rotation and can operate in the presence of structure variation between images.The automated landmark placement method was shown to be accurate as compared to ground-truth that was established both parametrically and manually. It is envisioned that these automated methods could prove useful for alleviating time-consuming and tedious tasks in applications that currently require manual input, and eliminate intra-user subjectivity

    Dynamical models and machine learning for supervised segmentation

    Get PDF
    This thesis is concerned with the problem of how to outline regions of interest in medical images, when the boundaries are weak or ambiguous and the region shapes are irregular. The focus on machine learning and interactivity leads to a common theme of the need to balance conflicting requirements. First, any machine learning method must strike a balance between how much it can learn and how well it generalises. Second, interactive methods must balance minimal user demand with maximal user control. To address the problem of weak boundaries,methods of supervised texture classification are investigated that do not use explicit texture features. These methods enable prior knowledge about the image to benefit any segmentation framework. A chosen dynamic contour model, based on probabilistic boundary tracking, combines these image priors with efficient modes of interaction. We show the benefits of the texture classifiers over intensity and gradient-based image models, in both classification and boundary extraction. To address the problem of irregular region shape, we devise a new type of statistical shape model (SSM) that does not use explicit boundary features or assume high-level similarity between region shapes. First, the models are used for shape discrimination, to constrain any segmentation framework by way of regularisation. Second, the SSMs are used for shape generation, allowing probabilistic segmentation frameworks to draw shapes from a prior distribution. The generative models also include novel methods to constrain shape generation according to information from both the image and user interactions. The shape models are first evaluated in terms of discrimination capability, and shown to out-perform other shape descriptors. Experiments also show that the shape models can benefit a standard type of segmentation algorithm by providing shape regularisers. We finally show how to exploit the shape models in supervised segmentation frameworks, and evaluate their benefits in user trials

    Upper airways segmentation using principal curvatures

    Get PDF
    Esta tesis propone una nueva técnica para segmentar las vías aéreas superiores. Esta propuesta permite la extracción de estructuras curvilíneas usando curvaturas principales. La propuesta permite la extracción de éstas estructuras en imágenes 2D y 3D. Entre las principales novedades se encuentra la propuesta de un nuevo criterio de parada en la propagación del algoritmo de realce de contraste (operador multi-escala de tipo sombrero alto). De la misma forma, el criterio de parada propuesto es usado para detener los algoritmos de difusión anisotrópica. Además, un nuevo criterio es propuesto para seleccionar las curvaturas principales que conforman las estructuras curvilíneas, que se basa en los criterios propuestos por Steger, Deng et. al. y Armande et. al. Además, se propone un nuevo algoritmo para realizar la supresión de nomáximos que permite reducir la presencia de discontinuidades en el borde de las estructuras curvilíneas. Para extraer los bordes de las estructuras curvilíneas, se utiliza un algoritmo de enlace que incluye un nuevo criterio de distancia para reducir la aparición de agujeros en la estructura final. Finalmente, con base en los resultados obtenidos, se utiliza un algoritmo morfológico para cerrar los agujeros y se aplica un algoritmo de crecimiento de regiones para obtener la segmentación final de las vías respiratorias superiores.This dissertation proposes a new approach to segment the upper airways. This proposal allows the extraction of curvilinear structures based on the principal curvatures. The proposal allows extracting these structures from 2D and 3D images. Among the main novelties is the proposal of a new stopping criterion to stop the propagation of the contrast enhancement algorithm (multiscale top-hat morphological operator). In the same way, the proposed stopping criterion is used to stop the anisotropic diffusion algorithms. In addition, a new criterion is proposed to select the principal curvatures that make up the curvilinear structures, which is based on the criteria proposed by Steger, Deng et. al. and Armande et. al. Furthermore, a new algorithm to perform the non-maximum suppression that allows reducing the presence of discontinuities in the border of curvilinear structures is proposed. To extract the edges of the curvilinear structures, a linking algorithm is used that includes a new distance criterion to reduce the appearance of gaps in the final structure. Finally, based on the obtained results, a morphological algorithm is used to close the gaps and a region growing algorithm to obtain the final upper airways segmentation is applied.Doctor en IngenieríaDoctorad

    Image Registration Workshop Proceedings

    Get PDF
    Automatic image registration has often been considered as a preliminary step for higher-level processing, such as object recognition or data fusion. But with the unprecedented amounts of data which are being and will continue to be generated by newly developed sensors, the very topic of automatic image registration has become and important research topic. This workshop presents a collection of very high quality work which has been grouped in four main areas: (1) theoretical aspects of image registration; (2) applications to satellite imagery; (3) applications to medical imagery; and (4) image registration for computer vision research

    Study on the Method of Constructing a Statistical Shape Model and Its Application to the Segmentation of Internal Organs in Medical Images

    Get PDF
    In image processing, segmentation is one of the critical tasks for diagnostic analysis and image interpretation. In the following thesis, we describe the investigation of three problems related to the segmentation algorithms for medical images: Active shape model algorithm, 3-dimensional (3-D) statistical shape model building and organic segmentation experiments. For the development of Active shape models, the constraints of statistical model reduced this algorithm to be difficult for various biological shapes. To overcome the coupling of parameters in the original algorithm, in this thesis, the genetic algorithm is introduced to relax the shape limitation. How to construct a robust and effective 3-D point model is still a key step in statistical shape models. Generally the shape information is obtained from manually segmented voxel data. In this thesis, a two-step procedure for generating these models was designed. After transformed the voxel data to triangular polygonal data, in the first step, attitudes of these interesting objects are aligned according their surface features. We propose to reflect the surface orientations by means of their Gauss maps. As well the Gauss maps are mapped to a complex plane using stereographic projection approach. The experiment was run to align a set of left lung models. The second step is identifying the positions of landmarks on polygonal surfaces. This is solved by surface parameterization method. We proposed two simplex methods to correspond the landmarks. A semi-automatic method attempts to “copy” the phasic positions of pre-placed landmarks to all the surfaces, which have been mapped to the same parameterization domain. Another automatic corresponding method attempts to place the landmarks equidistantly. Finally, the goodness experiments were performed to measure the difference to manually corresponded results. And we also compared the affection to correspondence when using different surface mapping methods. The third part of this thesis is applying the segmentation algorithms to solve clinical problems. We did not stick to the model-based methods but choose the suitable one or their complex according to the objects. In the experiment of lung regions segmentation which includes pulmonary nodules, we propose a complementary region growing method to deal with the unpredictable variation of image densities of lesion regions. In the experiments of liver regions, instead of using region growing method in 3-D style, we turn into a slice-by-slice style in order to reduce the overflows. The image intensity of cardiac regions is distinguishable from lung regions in CT image. But as to the adjacent zone of heart and liver boundary are generally blurry. We utilized a shape model guided method to refine the segmentation results.3-D segmentation techniques have been applied widely not only in medical imaging fields, but also in machine vision, computer graphic. At the last part of this thesis, we resume some interesting topics such as 3-D visualization for medical interpretation, human face recognition and object grasping robot etc.九州工業大学博士学位論文 学位記番号:工博甲第353号 学位授与年月日:平成25年9月27日Chapter 1: Introduction|Chapter 2: Framework of Medical Image Segmentation|Chapter 3: 2-D Organic Regions Using Active Shape Model and Genetic Algorithm|Chapter 4: Alignment of 3-D Models|Chapter 5: Corespondence of 3-D Models|Chapter 6:Experiments of Organic Segmentation|Chapter 7: Visualization Technology and Its Applications|Chapter 8: Conclusions and Future Works九州工業大学平成25年
    corecore