224 research outputs found

    A Generic Framework for Tracking Using Particle Filter With Dynamic Shape Prior

    Get PDF
    ©2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.DOI: 10.1109/TIP.2007.894244Tracking deforming objects involves estimating the global motion of the object and its local deformations as functions of time. Tracking algorithms using Kalman filters or particle filters (PFs) have been proposed for tracking such objects, but these have limitations due to the lack of dynamic shape information. In this paper, we propose a novel method based on employing a locally linear embedding in order to incorporate dynamic shape information into the particle filtering framework for tracking highly deformable objects in the presence of noise and clutter. The PF also models image statistics such as mean and variance of the given data which can be useful in obtaining proper separation of object and backgroun

    Image segmentation with variational active contours

    Get PDF
    An important branch of computer vision is image segmentation. Image segmentation aims at extracting meaningful objects lying in images either by dividing images into contiguous semantic regions, or by extracting one or more specific objects in images such as medical structures. The image segmentation task is in general very difficult to achieve since natural images are diverse, complex and the way we perceive them vary according to individuals. For more than a decade, a promising mathematical framework, based on variational models and partial differential equations, have been investigated to solve the image segmentation problem. This new approach benefits from well-established mathematical theories that allow people to analyze, understand and extend segmentation methods. Moreover, this framework is defined in a continuous setting which makes the proposed models independent with respect to the grid of digital images. This thesis proposes four new image segmentation models based on variational models and the active contours method. The active contours or snakes model is more and more used in image segmentation because it relies on solid mathematical properties and its numerical implementation uses the efficient level set method to track evolving contours. The first model defined in this dissertation proposes to determine global minimizers of the active contour/snake model. Despite of great theoretic properties, the active contours model suffers from the existence of local minima which makes the initial guess critical to get satisfactory results. We propose to couple the geodesic/geometric active contours model with the total variation functional and the Mumford-Shah functional to determine global minimizers of the snake model. It is interesting to notice that the merging of two well-known and "opposite" models of geodesic/geometric active contours, based on the detection of edges, and active contours without edges provides a global minimum to the image segmentation algorithm. The second model introduces a method that combines at the same time deterministic and statistical concepts. We define a non-parametric and non-supervised image classification model based on information theory and the shape gradient method. We show that this new segmentation model generalizes, in a conceptual way, many existing models based on active contours, statistical and information theoretic concepts such as mutual information. The third model defined in this thesis is a variational model that extracts in images objects of interest which geometric shape is given by the principal components analysis. The main interest of the proposed model is to combine the three families of active contours, based on the detection of edges, the segmentation of homogeneous regions and the integration of geometric shape prior, in order to use simultaneously the advantages of each family. Finally, the last model presents a generalization of the active contours model in scale spaces in order to extract structures at different scales of observation. The mathematical framework which allows us to define an evolution equation for active contours in scale spaces comes from string theory. This theory introduces a mathematical setting to process a manifold such as an active contour embedded in higher dimensional Riemannian spaces such as scale spaces. We thus define the energy functional and the evolution equation of the multiscale active contours model which can evolve in the most well-known scale spaces such as the linear or the curvature scale space

    Statistical shape analysis in a Bayesian framework; The geometric classification of fluvial sand bodies.

    Get PDF
    We present a novel shape classification method which is embedded in the Bayesian paradigm. We focus on the statistical classification of planar shapes by using methods which replace some previous approximate results by analytic calculations in a closed form. This gives rise to a new Bayesian shape classification algorithm and we evaluate its efficiency and efficacy on available shape databases. In addition we apply our results to the statistical classification of geological sand bodies. We suggest that our proposed classification method, that utilises the unique geometrical information of the sand bodies, is more substantial and can replace ad-hoc and simplistic methods that have been used in the past. Finally, we conclude this work by extending the proposed classification algorithm for shapes in three-dimensions

    Geometric modeling of non-rigid 3D shapes : theory and application to object recognition.

    Get PDF
    One of the major goals of computer vision is the development of flexible and efficient methods for shape representation. This is true, especially for non-rigid 3D shapes where a great variety of shapes are produced as a result of deformations of a non-rigid object. Modeling these non-rigid shapes is a very challenging problem. Being able to analyze the properties of such shapes and describe their behavior is the key issue in research. Also, considering photometric features can play an important role in many shape analysis applications, such as shape matching and correspondence because it contains rich information about the visual appearance of real objects. This new information (contained in photometric features) and its important applications add another, new dimension to the problem\u27s difficulty. Two main approaches have been adopted in the literature for shape modeling for the matching and retrieval problem, local and global approaches. Local matching is performed between sparse points or regions of the shape, while the global shape approaches similarity is measured among entire models. These methods have an underlying assumption that shapes are rigidly transformed. And Most descriptors proposed so far are confined to shape, that is, they analyze only geometric and/or topological properties of 3D models. A shape descriptor or model should be isometry invariant, scale invariant, be able to capture the fine details of the shape, computationally efficient, and have many other good properties. A shape descriptor or model is needed. This shape descriptor should be: able to deal with the non-rigid shape deformation, able to handle the scale variation problem with less sensitivity to noise, able to match shapes related to the same class even if these shapes have missing parts, and able to encode both the photometric, and geometric information in one descriptor. This dissertation will address the problem of 3D non-rigid shape representation and textured 3D non-rigid shapes based on local features. Two approaches will be proposed for non-rigid shape matching and retrieval based on Heat Kernel (HK), and Scale-Invariant Heat Kernel (SI-HK) and one approach for modeling textured 3D non-rigid shapes based on scale-invariant Weighted Heat Kernel Signature (WHKS). For the first approach, the Laplace-Beltrami eigenfunctions is used to detect a small number of critical points on the shape surface. Then a shape descriptor is formed based on the heat kernels at the detected critical points for different scales. Sparse representation is used to reduce the dimensionality of the calculated descriptor. The proposed descriptor is used for classification via the Collaborative Representation-based Classification with a Regularized Least Square (CRC-RLS) algorithm. The experimental results have shown that the proposed descriptor can achieve state-of-the-art results on two benchmark data sets. For the second approach, an improved method to introduce scale-invariance has been also proposed to avoid noise-sensitive operations in the original transformation method. Then a new 3D shape descriptor is formed based on the histograms of the scale-invariant HK for a number of critical points on the shape at different time scales. A Collaborative Classification (CC) scheme is then employed for object classification. The experimental results have shown that the proposed descriptor can achieve high performance on the two benchmark data sets. An important observation from the experiments is that the proposed approach is more able to handle data under several distortion scenarios (noise, shot-noise, scale, and under missing parts) than the well-known approaches. For modeling textured 3D non-rigid shapes, this dissertation introduces, for the first time, a mathematical framework for the diffusion geometry on textured shapes. This dissertation presents an approach for shape matching and retrieval based on a weighted heat kernel signature. It shows how to include photometric information as a weight over the shape manifold, and it also propose a novel formulation for heat diffusion over weighted manifolds. Then this dissertation presents a new discretization method for the weighted heat kernel induced by the linear FEM weights. Finally, the weighted heat kernel signature is used as a shape descriptor. The proposed descriptor encodes both the photometric, and geometric information based on the solution of one equation. Finally, this dissertation proposes an approach for 3D face recognition based on the front contours of heat propagation over the face surface. The front contours are extracted automatically as heat is propagating starting from a detected set of landmarks. The propagation contours are used to successfully discriminate the various faces. The proposed approach is evaluated on the largest publicly available database of 3D facial images and successfully compared to the state-of-the-art approaches in the literature. This work can be extended to the problem of dense correspondence between non-rigid shapes. The proposed approaches with the properties of the Laplace-Beltrami eigenfunction can be utilized for 3D mesh segmentation. Another possible application of the proposed approach is the view point selection for 3D objects by selecting the most informative views that collectively provide the most descriptive presentation of the surface

    Information Geometry

    Get PDF
    This Special Issue of the journal Entropy, titled “Information Geometry I”, contains a collection of 17 papers concerning the foundations and applications of information geometry. Based on a geometrical interpretation of probability, information geometry has become a rich mathematical field employing the methods of differential geometry. It has numerous applications to data science, physics, and neuroscience. Presenting original research, yet written in an accessible, tutorial style, this collection of papers will be useful for scientists who are new to the field, while providing an excellent reference for the more experienced researcher. Several papers are written by authorities in the field, and topics cover the foundations of information geometry, as well as applications to statistics, Bayesian inference, machine learning, complex systems, physics, and neuroscience

    Variational segmentation problems using prior knowledge in imaging and vision

    Get PDF

    State of the Art of Level Set Methods in Segmentation and Registration of Medical Imaging Modalities

    Get PDF
    Segmentation of medical images is an important step in various applications such as visualization, quantitative analysis and image-guided surgery. Numerous segmentation methods have been developed in the past two decades for extraction of organ contours on medical images. Low-level segmentation methods, such as pixel-based clustering, region growing, and filter-based edge detection, require additional pre-processing and post-processing as well as considerable amounts of expert intervention or information of the objects of interest. Furthermore the subsequent analysis of segmented objects is hampered by the primitive, pixel or voxel level representations from those region-based segmentation. Deformable models, on the other hand, provide an explicit representation of the boundary and the shape of the object. They combine several desirable features such as inherent connectivity and smoothness, which counteract noise and boundary irregularities, as well as the ability to incorporate knowledge about the object of interest. However, parametric deformable models have two main limitations. First, in situations where the initial model and desired object boundary differ greatly in size and shape, the model must be re-parameterized dynamically to faithfully recover the object boundary. The second limitation is that it has difficulty dealing with topological adaptation such as splitting or merging model parts, a useful property for recovering either multiple objects or objects with unknown topology. This difficulty is caused by the fact that a new parameterization must be constructed whenever topology change occurs, which requires sophisticated schemes. Level set deformable models, also referred to as geometric deformable models, provide an elegant solution to address the primary limitations of parametric deformable models. These methods have drawn a great deal of attention since their introduction in 1988. Advantages of the contour implicit formulation of the deformable model over parametric formulation include: (1) no parameterization of the contour, (2) topological flexibility, (3) good numerical stability, (4) straightforward extension of the 2D formulation to n-D. Recent reviews on the subject include papers from Suri. In this chapter we give a general overview of the level set segmentation methods with emphasize on new frameworks recently introduced in the context of medical imaging problems. We then introduce novel approaches that aim at combining segmentation and registration in a level set formulation. Finally we review a selective set of clinical works with detailed validation of the level set methods for several clinical applications
    corecore