118 research outputs found

    Left Ventricular Border Tracking Using Cardiac Motion Models and Optical Flow

    Get PDF
    The use of automated methods is becoming increasingly important for assessing cardiac function quantitatively and objectively. In this study, we propose a method for tracking three-dimensional (3-D) left ventricular contours. The method consists of a local optical flow tracker and a global tracker, which uses a statistical model of cardiac motion in an optical-flow formulation. We propose a combination of local and global trackers using gradient-based weights. The algorithm was tested on 35 echocardiographic sequences, with good results (surface error: 1.35 ± 0.46 mm, absolute volume error: 5.4 ± 4.8 mL). This demonstrates the method’s potential in automated tracking in clinical quality echocardiograms, facilitating the quantitative and objective assessment of cardiac functio

    Automated volume measurements in echocardiography by utilizing expert knowledge

    Get PDF
    Left ventricular (LV) volumes and ejection fraction (EF) are important parameters for diagnosis, prognosis, and treatment planning in patients with heart disease. These parameters are commonly measured by manual tracing in echocardiographic images, a procedure that is time consuming, prone to inter- and intra-observer variability, and require highly trained operators. This is particularly the case in three-dimensional (3D) echocardiography, where the increased amount of data makes manual tracing impractical. Automated methods for measuring LV volumes and EF can therefore improve efficiency and accuracy of echocardiographic examinations, giving better diagnosis at a lower cost. The main goal of this thesis was to improve the efficiency and quality of cardiac measurements. More specifically, the goal was to develop rapid and accurate methods that utilize expert knowledge for automated evaluation of cardiac function in echocardiography. The thesis presents several methods for automated volume and EF measurements in echocardiographic data. For two-dimensional (2D) echocardiography, an atlas based segmentation algorithm is presented in paper A. This method utilizes manually traced endocardial contours in a validated case database to control a snake optimized by dynamic programming. The challenge with this approach is to find the most optimal case in the database. More promising results are achieved in triplane echocardiography using a multiview and multi-frame extension to the active appearance model (AAM) framework, as demonstrated in paper B. The AAM generalizes better to new patient data and is based on more robust optimization schemes than the atlas-based method. In triplane images, the results of the AAM algorithm may be improved further by integrating a snake algorithm into the AAM framework and by constraining the AAM to manually defined landmarks, and this is shown in paper C. For 3D echocardiograms, a clinical semi-automated volume measurement tool with expert selected points is validated in paper D. This tool compares favorably to a reference measurement tool, with good agreement in measured volumes, and with a significantly lower analysis time. Finally, in paper E, fully automated real-time segmentation in 3D echocardiography is demonstrated using a 3D active shape model (ASM) of the left ventricle in a Kalman filter framework. The main advantage of this approach is its processing performance, allowing for real-time volume and EF estimates. Statistical models such as AAMs and ASMs provide elegant frameworks for incorporating expert knowledge into segmentation algorithms. Expert knowledge can also be utilized directly through manual input to semi-automated methods, allowing for manual initialization and correction of automatically determined volumes. The latter technique is particularly suitable for clinical routine examinations, while the fully automated 3D ASM method can extend the use of echocardiography to new clinical areas such as automated patient monitoring. In this thesis, different methods for utilizing expert knowledge in automated segmentation algorithms for echocardiography have been developed and evaluated. Particularly in 3D echocardiography, these contributions are expected to improve efficiency and quality of cardiac measurements

    Bi-temporal 3D active appearance models with applications to unsupervised ejection fraction estimation

    Get PDF
    Rapid and unsupervised quantitative analysis is of utmost importance to ensure clinical acceptance of many examinations using cardiac magnetic resonance imaging (MRI). We present a framework that aims at fulfilling these goals for the application of left ventricular ejection fraction estimation in four-dimensional MRI. The theoretical foundation of our work is the generative two-dimensional Active Appearance Models by Cootes et al., here extended to bi-temporal, three-dimensional models. Further issues treated include correction of respiratory induced slice displacements, systole detection, and a texture model pruning strategy. Cross-validation carried out on clinical-quality scans of twelve volunteers indicates that ejection fraction and cardiac blood pool volumes can be estimated automatically and rapidly with accuracy on par with typical inter-observer variability. \u

    Automated Analysis of 3D Stress Echocardiography

    Get PDF
    __Abstract__ The human circulatory system consists of the heart, blood, arteries, veins and capillaries. The heart is the muscular organ which pumps the blood through the human body (Fig. 1.1,1.2). Deoxygenated blood flows through the right atrium into the right ventricle, which pumps the blood into the pulmonary arteries. The blood is carried to the lungs, where it passes through a capillary network that enables the release of carbon dioxide and the uptake of oxygen. Oxygenated blood then returns to the heart via the pulmonary veins and flows from the left atrium into the left ventricle. The left ventricle then pumps the blood through the aorta, the major artery which supplies blood to the rest of the body [Drake et a!., 2005; Guyton and Halt 1996]. Therefore, it is vital that the cardiovascular system remains healthy. Disease of the cardiovascular system, if untreated, ultimately leads to the failure of other organs and death

    FAME - A Flexible Appearance Modelling Environment

    Get PDF
    Combined modelling of pixel intensities and shape has proven to be a very robust and widely applicable approach to interpret images. As such the Active Appearance Model (AAM) framework has been applied to a wide variety of problems within medical image analysis. This paper summarises AAM applications within medicine and describes a public domain implementation, namely the Flexible Appearance Modelling Environment (FAME). We give guidelines for the use of this research platform, and show that the optimisation techniques used renders it applicable to interactive medical applications. To increase performance and make models generalise better, we apply parallel analysis to obtain automatic and objective model truncation. Further, two different AAM training methods are compared along with a reference case study carried out on cross-sectional short-axis cardiac magnetic resonance images and face images. Source code and annotated data sets needed to reproduce the results are put in the public domain for further investigation

    Myocardial Motion Analysis from B-Mode Echocardiograms

    Get PDF
    The quantitative assessment of cardiac motion is a fundamental concept to evaluate ventricular malfunction. We present a new optical-flow-based method for estimating heart motion from two-dimensional echocardiographic sequences. To account for typical heart motions, such as contraction/expansion and shear, we analyze the images locally by using a local-affine model for the velocity in space and a linear model in time. The regional motion parameters are estimated in the least-squares sense inside a sliding spatiotemporal B-spline window. Robustness and spatial adaptability is achieved by estimating the model parameters at multiple scales within a coarse-to-fine multiresolution framework. We use a Wavelet-like algorithm for computing B-spline-weighted inner products and moments at dyadic scales to increase computational efficiency. In order to characterize myocardial contractility and to simplify the detection of myocardial dysfunction, the radial component of the velocity with respect to a reference point is color coded and visualized inside a time-varying region of interest. The algorithm was first validated on synthetic data sets that simulate a beating heart with a speckle-like appearance of echocardiograms. The ability to estimate motion from real ultrasound sequences was demonstrated by a rotating phantom experiment. The method was also applied to a set of in vivo echocardiograms from an animal study. Motion estimation results were in good agreement with the expert echocardiographic reading

    Semi-automatic algorithm for construction of the left ventricular area variation curve over a complete cardiac cycle

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Two-dimensional echocardiography (2D-echo) allows the evaluation of cardiac structures and their movements. A wide range of clinical diagnoses are based on the performance of the left ventricle. The evaluation of myocardial function is typically performed by manual segmentation of the ventricular cavity in a series of dynamic images. This process is laborious and operator dependent. The automatic segmentation of the left ventricle in 4-chamber long-axis images during diastole is troublesome, because of the opening of the mitral valve.</p> <p>Methods</p> <p>This work presents a method for segmentation of the left ventricle in dynamic 2D-echo 4-chamber long-axis images over the complete cardiac cycle. The proposed algorithm is based on classic image processing techniques, including time-averaging and wavelet-based denoising, edge enhancement filtering, morphological operations, homotopy modification, and watershed segmentation. The proposed method is semi-automatic, requiring a single user intervention for identification of the position of the mitral valve in the first temporal frame of the video sequence. Image segmentation is performed on a set of dynamic 2D-echo images collected from an examination covering two consecutive cardiac cycles.</p> <p>Results</p> <p>The proposed method is demonstrated and evaluated on twelve healthy volunteers. The results are quantitatively evaluated using four different metrics, in a comparison with contours manually segmented by a specialist, and with four alternative methods from the literature. The method's intra- and inter-operator variabilities are also evaluated.</p> <p>Conclusions</p> <p>The proposed method allows the automatic construction of the area variation curve of the left ventricle corresponding to a complete cardiac cycle. This may potentially be used for the identification of several clinical parameters, including the area variation fraction. This parameter could potentially be used for evaluating the global systolic function of the left ventricle.</p
    • …
    corecore