242 research outputs found

    The Power of Localization for Efficiently Learning Linear Separators with Noise

    Full text link
    We introduce a new approach for designing computationally efficient learning algorithms that are tolerant to noise, and demonstrate its effectiveness by designing algorithms with improved noise tolerance guarantees for learning linear separators. We consider both the malicious noise model and the adversarial label noise model. For malicious noise, where the adversary can corrupt both the label and the features, we provide a polynomial-time algorithm for learning linear separators in ℜd\Re^d under isotropic log-concave distributions that can tolerate a nearly information-theoretically optimal noise rate of η=Ω(ϵ)\eta = \Omega(\epsilon). For the adversarial label noise model, where the distribution over the feature vectors is unchanged, and the overall probability of a noisy label is constrained to be at most η\eta, we also give a polynomial-time algorithm for learning linear separators in ℜd\Re^d under isotropic log-concave distributions that can handle a noise rate of η=Ω(ϵ)\eta = \Omega\left(\epsilon\right). We show that, in the active learning model, our algorithms achieve a label complexity whose dependence on the error parameter ϵ\epsilon is polylogarithmic. This provides the first polynomial-time active learning algorithm for learning linear separators in the presence of malicious noise or adversarial label noise.Comment: Contains improved label complexity analysis communicated to us by Steve Hannek

    Statistical Active Learning Algorithms for Noise Tolerance and Differential Privacy

    Full text link
    We describe a framework for designing efficient active learning algorithms that are tolerant to random classification noise and are differentially-private. The framework is based on active learning algorithms that are statistical in the sense that they rely on estimates of expectations of functions of filtered random examples. It builds on the powerful statistical query framework of Kearns (1993). We show that any efficient active statistical learning algorithm can be automatically converted to an efficient active learning algorithm which is tolerant to random classification noise as well as other forms of "uncorrelated" noise. The complexity of the resulting algorithms has information-theoretically optimal quadratic dependence on 1/(1−2η)1/(1-2\eta), where η\eta is the noise rate. We show that commonly studied concept classes including thresholds, rectangles, and linear separators can be efficiently actively learned in our framework. These results combined with our generic conversion lead to the first computationally-efficient algorithms for actively learning some of these concept classes in the presence of random classification noise that provide exponential improvement in the dependence on the error ϵ\epsilon over their passive counterparts. In addition, we show that our algorithms can be automatically converted to efficient active differentially-private algorithms. This leads to the first differentially-private active learning algorithms with exponential label savings over the passive case.Comment: Extended abstract appears in NIPS 201

    Noise-adaptive Margin-based Active Learning and Lower Bounds under Tsybakov Noise Condition

    Full text link
    We present a simple noise-robust margin-based active learning algorithm to find homogeneous (passing the origin) linear separators and analyze its error convergence when labels are corrupted by noise. We show that when the imposed noise satisfies the Tsybakov low noise condition (Mammen, Tsybakov, and others 1999; Tsybakov 2004) the algorithm is able to adapt to unknown level of noise and achieves optimal statistical rate up to poly-logarithmic factors. We also derive lower bounds for margin based active learning algorithms under Tsybakov noise conditions (TNC) for the membership query synthesis scenario (Angluin 1988). Our result implies lower bounds for the stream based selective sampling scenario (Cohn 1990) under TNC for some fairly simple data distributions. Quite surprisingly, we show that the sample complexity cannot be improved even if the underlying data distribution is as simple as the uniform distribution on the unit ball. Our proof involves the construction of a well separated hypothesis set on the d-dimensional unit ball along with carefully designed label distributions for the Tsybakov noise condition. Our analysis might provide insights for other forms of lower bounds as well.Comment: 16 pages, 2 figures. An abridged version to appear in Thirtieth AAAI Conference on Artificial Intelligence (AAAI), which is held in Phoenix, AZ USA in 201

    Efficient Learning of Linear Separators under Bounded Noise

    Full text link
    We study the learnability of linear separators in ℜd\Re^d in the presence of bounded (a.k.a Massart) noise. This is a realistic generalization of the random classification noise model, where the adversary can flip each example xx with probability η(x)≤η\eta(x) \leq \eta. We provide the first polynomial time algorithm that can learn linear separators to arbitrarily small excess error in this noise model under the uniform distribution over the unit ball in ℜd\Re^d, for some constant value of η\eta. While widely studied in the statistical learning theory community in the context of getting faster convergence rates, computationally efficient algorithms in this model had remained elusive. Our work provides the first evidence that one can indeed design algorithms achieving arbitrarily small excess error in polynomial time under this realistic noise model and thus opens up a new and exciting line of research. We additionally provide lower bounds showing that popular algorithms such as hinge loss minimization and averaging cannot lead to arbitrarily small excess error under Massart noise, even under the uniform distribution. Our work instead, makes use of a margin based technique developed in the context of active learning. As a result, our algorithm is also an active learning algorithm with label complexity that is only a logarithmic the desired excess error ϵ\epsilon
    • …
    corecore