115,535 research outputs found

    Adaptive Sensing for Estimation of Structured Sparse Signals

    Get PDF
    In many practical settings one can sequentially and adaptively guide the collection of future data, based on information extracted from data collected previously. These sequential data collection procedures are known by different names, such as sequential experimental design, active learning or adaptive sensing/sampling. The intricate relation between data analysis and acquisition in adaptive sensing paradigms can be extremely powerful, and often allows for reliable signal estimation and detection in situations where non-adaptive sensing would fail dramatically. In this work we investigate the problem of estimating the support of a structured sparse signal from coordinate-wise observations under the adaptive sensing paradigm. We present a general procedure for support set estimation that is optimal in a variety of cases and shows that through the use of adaptive sensing one can: (i) mitigate the effect of observation noise when compared to non-adaptive sensing and, (ii) capitalize on structural information to a much larger extent than possible with non-adaptive sensing. In addition to a general procedure to perform adaptive sensing in structured settings we present both performance upper bounds, and corresponding lower bounds for both sensing paradigms

    Hybrid hierarchical learning for solving complex sequential tasks using the robotic manipulation network ROMAN

    Get PDF
    Solving long sequential tasks remains a non-trivial challenge in the field of embodied artificial intelligence. Enabling a robotic system to perform diverse sequential tasks with a broad range of manipulation skills is a notable open problem and continues to be an active area of research. In this work, we present a hybrid hierarchical learning framework, the robotic manipulation network ROMAN, to address the challenge of solving multiple complex tasks over long time horizons in robotic manipulation. By integrating behavioural cloning, imitation learning and reinforcement learning, ROMAN achieves task versatility and robust failure recovery. It consists of a central manipulation network that coordinates an ensemble of various neural networks, each specializing in different recombinable subtasks to generate their correct in-sequence actions, to solve complex long-horizon manipulation tasks. Our experiments show that, by orchestrating and activating these specialized manipulation experts, ROMAN generates correct sequential activations accomplishing long sequences of sophisticated manipulation tasks and achieving adaptive behaviours beyond demonstrations, while exhibiting robustness to various sensory noises. These results highlight the significance and versatility of ROMAN’s dynamic adaptability featuring autonomous failure recovery capabilities, and underline its potential for various autonomous manipulation tasks that require adaptive motor skills

    Gaussian Process Planning with Lipschitz Continuous Reward Functions: Towards Unifying Bayesian Optimization, Active Learning, and Beyond

    Full text link
    This paper presents a novel nonmyopic adaptive Gaussian process planning (GPP) framework endowed with a general class of Lipschitz continuous reward functions that can unify some active learning/sensing and Bayesian optimization criteria and offer practitioners some flexibility to specify their desired choices for defining new tasks/problems. In particular, it utilizes a principled Bayesian sequential decision problem framework for jointly and naturally optimizing the exploration-exploitation trade-off. In general, the resulting induced GPP policy cannot be derived exactly due to an uncountable set of candidate observations. A key contribution of our work here thus lies in exploiting the Lipschitz continuity of the reward functions to solve for a nonmyopic adaptive epsilon-optimal GPP (epsilon-GPP) policy. To plan in real time, we further propose an asymptotically optimal, branch-and-bound anytime variant of epsilon-GPP with performance guarantee. We empirically demonstrate the effectiveness of our epsilon-GPP policy and its anytime variant in Bayesian optimization and an energy harvesting task.Comment: 30th AAAI Conference on Artificial Intelligence (AAAI 2016), Extended version with proofs, 17 page

    RObotic MAnipulation Network (ROMAN) \unicode{x2013} Hybrid Hierarchical Learning for Solving Complex Sequential Tasks

    Full text link
    Solving long sequential tasks poses a significant challenge in embodied artificial intelligence. Enabling a robotic system to perform diverse sequential tasks with a broad range of manipulation skills is an active area of research. In this work, we present a Hybrid Hierarchical Learning framework, the Robotic Manipulation Network (ROMAN), to address the challenge of solving multiple complex tasks over long time horizons in robotic manipulation. ROMAN achieves task versatility and robust failure recovery by integrating behavioural cloning, imitation learning, and reinforcement learning. It consists of a central manipulation network that coordinates an ensemble of various neural networks, each specialising in distinct re-combinable sub-tasks to generate their correct in-sequence actions for solving complex long-horizon manipulation tasks. Experimental results show that by orchestrating and activating these specialised manipulation experts, ROMAN generates correct sequential activations for accomplishing long sequences of sophisticated manipulation tasks and achieving adaptive behaviours beyond demonstrations, while exhibiting robustness to various sensory noises. These results demonstrate the significance and versatility of ROMAN's dynamic adaptability featuring autonomous failure recovery capabilities, and highlight its potential for various autonomous manipulation tasks that demand adaptive motor skills.Comment: To appear in Nature Machine Intelligence. Includes the main and supplementary manuscript. Total of 70 pages, with a total of 9 Figures and 17 Table

    Non-monotone Submodular Maximization with Nearly Optimal Adaptivity and Query Complexity

    Full text link
    Submodular maximization is a general optimization problem with a wide range of applications in machine learning (e.g., active learning, clustering, and feature selection). In large-scale optimization, the parallel running time of an algorithm is governed by its adaptivity, which measures the number of sequential rounds needed if the algorithm can execute polynomially-many independent oracle queries in parallel. While low adaptivity is ideal, it is not sufficient for an algorithm to be efficient in practice---there are many applications of distributed submodular optimization where the number of function evaluations becomes prohibitively expensive. Motivated by these applications, we study the adaptivity and query complexity of submodular maximization. In this paper, we give the first constant-factor approximation algorithm for maximizing a non-monotone submodular function subject to a cardinality constraint kk that runs in O(log(n))O(\log(n)) adaptive rounds and makes O(nlog(k))O(n \log(k)) oracle queries in expectation. In our empirical study, we use three real-world applications to compare our algorithm with several benchmarks for non-monotone submodular maximization. The results demonstrate that our algorithm finds competitive solutions using significantly fewer rounds and queries.Comment: 12 pages, 8 figure
    corecore