25,913 research outputs found

    Facial Expression Recognition in the Wild using Rich Deep Features

    Full text link
    Facial Expression Recognition is an active area of research in computer vision with a wide range of applications. Several approaches have been developed to solve this problem for different benchmark datasets. However, Facial Expression Recognition in the wild remains an area where much work is still needed to serve real-world applications. To this end, in this paper we present a novel approach towards facial expression recognition. We fuse rich deep features with domain knowledge through encoding discriminant facial patches. We conduct experiments on two of the most popular benchmark datasets; CK and TFE. Moreover, we present a novel dataset that, unlike its precedents, consists of natural - not acted - expression images. Experimental results show that our approach achieves state-of-the-art results over standard benchmarks and our own datasetComment: in International Conference in Image Processing, 201

    Learning Instance Segmentation by Interaction

    Full text link
    We present an approach for building an active agent that learns to segment its visual observations into individual objects by interacting with its environment in a completely self-supervised manner. The agent uses its current segmentation model to infer pixels that constitute objects and refines the segmentation model by interacting with these pixels. The model learned from over 50K interactions generalizes to novel objects and backgrounds. To deal with noisy training signal for segmenting objects obtained by self-supervised interactions, we propose robust set loss. A dataset of robot's interactions along-with a few human labeled examples is provided as a benchmark for future research. We test the utility of the learned segmentation model by providing results on a downstream vision-based control task of rearranging multiple objects into target configurations from visual inputs alone. Videos, code, and robotic interaction dataset are available at https://pathak22.github.io/seg-by-interaction/Comment: Website at https://pathak22.github.io/seg-by-interaction

    The ApolloScape Open Dataset for Autonomous Driving and its Application

    Full text link
    Autonomous driving has attracted tremendous attention especially in the past few years. The key techniques for a self-driving car include solving tasks like 3D map construction, self-localization, parsing the driving road and understanding objects, which enable vehicles to reason and act. However, large scale data set for training and system evaluation is still a bottleneck for developing robust perception models. In this paper, we present the ApolloScape dataset [1] and its applications for autonomous driving. Compared with existing public datasets from real scenes, e.g. KITTI [2] or Cityscapes [3], ApolloScape contains much large and richer labelling including holistic semantic dense point cloud for each site, stereo, per-pixel semantic labelling, lanemark labelling, instance segmentation, 3D car instance, high accurate location for every frame in various driving videos from multiple sites, cities and daytimes. For each task, it contains at lease 15x larger amount of images than SOTA datasets. To label such a complete dataset, we develop various tools and algorithms specified for each task to accelerate the labelling process, such as 3D-2D segment labeling tools, active labelling in videos etc. Depend on ApolloScape, we are able to develop algorithms jointly consider the learning and inference of multiple tasks. In this paper, we provide a sensor fusion scheme integrating camera videos, consumer-grade motion sensors (GPS/IMU), and a 3D semantic map in order to achieve robust self-localization and semantic segmentation for autonomous driving. We show that practically, sensor fusion and joint learning of multiple tasks are beneficial to achieve a more robust and accurate system. We expect our dataset and proposed relevant algorithms can support and motivate researchers for further development of multi-sensor fusion and multi-task learning in the field of computer vision.Comment: Version 4: Accepted by TPAMI. Version 3: 17 pages, 10 tables, 11 figures, added the application (DeLS-3D) based on the ApolloScape Dataset. Version 2: 7 pages, 6 figures, added comparison with BDD100K datase

    RGBD Datasets: Past, Present and Future

    Full text link
    Since the launch of the Microsoft Kinect, scores of RGBD datasets have been released. These have propelled advances in areas from reconstruction to gesture recognition. In this paper we explore the field, reviewing datasets across eight categories: semantics, object pose estimation, camera tracking, scene reconstruction, object tracking, human actions, faces and identification. By extracting relevant information in each category we help researchers to find appropriate data for their needs, and we consider which datasets have succeeded in driving computer vision forward and why. Finally, we examine the future of RGBD datasets. We identify key areas which are currently underexplored, and suggest that future directions may include synthetic data and dense reconstructions of static and dynamic scenes.Comment: 8 pages excluding references (CVPR style

    Three-dimensional Backbone Network for 3D Object Detection in Traffic Scenes

    Full text link
    The task of detecting 3D objects in traffic scenes has a pivotal role in many real-world applications. However, the performance of 3D object detection is lower than that of 2D object detection due to the lack of powerful 3D feature extraction methods. To address this issue, this study proposes a 3D backbone network to acquire comprehensive 3D feature maps for 3D object detection. It primarily consists of sparse 3D convolutional neural network operations in the point cloud. The 3D backbone network can inherently learn 3D features from the raw data without compressing the point cloud into multiple 2D images. The sparse 3D convolutional neural network takes full advantage of the sparsity in the 3D point cloud to accelerate computation and save memory, which makes the 3D backbone network feasible in a real-world application. Empirical experiments were conducted on the KITTI benchmark and comparable results were obtained with respect to the state-of-the-art performance for 3D object detection

    Saliency Prediction in the Deep Learning Era: Successes, Limitations, and Future Challenges

    Full text link
    Visual saliency models have enjoyed a big leap in performance in recent years, thanks to advances in deep learning and large scale annotated data. Despite enormous effort and huge breakthroughs, however, models still fall short in reaching human-level accuracy. In this work, I explore the landscape of the field emphasizing on new deep saliency models, benchmarks, and datasets. A large number of image and video saliency models are reviewed and compared over two image benchmarks and two large scale video datasets. Further, I identify factors that contribute to the gap between models and humans and discuss remaining issues that need to be addressed to build the next generation of more powerful saliency models. Some specific questions that are addressed include: in what ways current models fail, how to remedy them, what can be learned from cognitive studies of attention, how explicit saliency judgments relate to fixations, how to conduct fair model comparison, and what are the emerging applications of saliency models

    BubbleNets: Learning to Select the Guidance Frame in Video Object Segmentation by Deep Sorting Frames

    Full text link
    Semi-supervised video object segmentation has made significant progress on real and challenging videos in recent years. The current paradigm for segmentation methods and benchmark datasets is to segment objects in video provided a single annotation in the first frame. However, we find that segmentation performance across the entire video varies dramatically when selecting an alternative frame for annotation. This paper address the problem of learning to suggest the single best frame across the video for user annotation-this is, in fact, never the first frame of video. We achieve this by introducing BubbleNets, a novel deep sorting network that learns to select frames using a performance-based loss function that enables the conversion of expansive amounts of training examples from already existing datasets. Using BubbleNets, we are able to achieve an 11% relative improvement in segmentation performance on the DAVIS benchmark without any changes to the underlying method of segmentation.Comment: CVPR 201

    Salient Object Detection: A Benchmark

    Full text link
    We extensively compare, qualitatively and quantitatively, 40 state-of-the-art models (28 salient object detection, 10 fixation prediction, 1 objectness, and 1 baseline) over 6 challenging datasets for the purpose of benchmarking salient object detection and segmentation methods. From the results obtained so far, our evaluation shows a consistent rapid progress over the last few years in terms of both accuracy and running time. The top contenders in this benchmark significantly outperform the models identified as the best in the previous benchmark conducted just two years ago. We find that the models designed specifically for salient object detection generally work better than models in closely related areas, which in turn provides a precise definition and suggests an appropriate treatment of this problem that distinguishes it from other problems. In particular, we analyze the influences of center bias and scene complexity in model performance, which, along with the hard cases for state-of-the-art models, provide useful hints towards constructing more challenging large scale datasets and better saliency models. Finally, we propose probable solutions for tackling several open problems such as evaluation scores and dataset bias, which also suggest future research directions in the rapidly-growing field of salient object detection

    Joint Multi-view Face Alignment in the Wild

    Full text link
    The de facto algorithm for facial landmark estimation involves running a face detector with a subsequent deformable model fitting on the bounding box. This encompasses two basic problems: i) the detection and deformable fitting steps are performed independently, while the detector might not provide best-suited initialisation for the fitting step, ii) the face appearance varies hugely across different poses, which makes the deformable face fitting very challenging and thus distinct models have to be used (\eg, one for profile and one for frontal faces). In this work, we propose the first, to the best of our knowledge, joint multi-view convolutional network to handle large pose variations across faces in-the-wild, and elegantly bridge face detection and facial landmark localisation tasks. Existing joint face detection and landmark localisation methods focus only on a very small set of landmarks. By contrast, our method can detect and align a large number of landmarks for semi-frontal (68 landmarks) and profile (39 landmarks) faces. We evaluate our model on a plethora of datasets including standard static image datasets such as IBUG, 300W, COFW, and the latest Menpo Benchmark for both semi-frontal and profile faces. Significant improvement over state-of-the-art methods on deformable face tracking is witnessed on 300VW benchmark. We also demonstrate state-of-the-art results for face detection on FDDB and MALF datasets.Comment: submit to IEEE Transactions on Image Processin

    A Dataset for Developing and Benchmarking Active Vision

    Full text link
    We present a new public dataset with a focus on simulating robotic vision tasks in everyday indoor environments using real imagery. The dataset includes 20,000+ RGB-D images and 50,000+ 2D bounding boxes of object instances densely captured in 9 unique scenes. We train a fast object category detector for instance detection on our data. Using the dataset we show that, although increasingly accurate and fast, the state of the art for object detection is still severely impacted by object scale, occlusion, and viewing direction all of which matter for robotics applications. We next validate the dataset for simulating active vision, and use the dataset to develop and evaluate a deep-network-based system for next best move prediction for object classification using reinforcement learning. Our dataset is available for download at cs.unc.edu/~ammirato/active_vision_dataset_website/.Comment: To appear at ICRA 201
    • …
    corecore