3,579 research outputs found

    Structure-Preserving Binary Representations for RGB-D Action Recognition

    Get PDF
    In this paper, we propose a novel binary local representation for RGB-D video data fusion with a structure-preserving projection. Our contribution consists of two aspects. To acquire a general feature for the video data, we convert the problem to describing the gradient fields of RGB and depth information of video sequences. With the local fluxes of the gradient fields, which include the orientation and the magnitude of the neighborhood of each point, a new kind of continuous local descriptor called Local Flux Feature(LFF) is obtained. Then the LFFs from RGB and depth channels are fused into a Hamming spacevia the Structure Preserving Projection (SPP). Specifically, an orthogonal projection matrix is applied to preserve the pairwise structure with a shape constraint to avoid the collapse of data structure in the projected space. Furthermore, a bipartite graph structure of data is taken into consideration, which is regarded as a higher level connection between samples and classes than the pairwise structure of local features. The extensive experiments show not only the high efficiency of binary codes and the effectiveness of combining LFFs from RGB-D channels via SPP on various action recognition benchmarks of RGB-D data, but also the potential power of LFF for general action recognition

    Exploiting multimedia in creating and analysing multimedia Web archives

    No full text
    The data contained on the web and the social web are inherently multimedia and consist of a mixture of textual, visual and audio modalities. Community memories embodied on the web and social web contain a rich mixture of data from these modalities. In many ways, the web is the greatest resource ever created by human-kind. However, due to the dynamic and distributed nature of the web, its content changes, appears and disappears on a daily basis. Web archiving provides a way of capturing snapshots of (parts of) the web for preservation and future analysis. This paper provides an overview of techniques we have developed within the context of the EU funded ARCOMEM (ARchiving COmmunity MEMories) project to allow multimedia web content to be leveraged during the archival process and for post-archival analysis. Through a set of use cases, we explore several practical applications of multimedia analytics within the realm of web archiving, web archive analysis and multimedia data on the web in general

    Leaning Robust Sequence Features via Dynamic Temporal Pattern Discovery

    Get PDF
    As a major type of data, time series possess invaluable latent knowledge for describing the real world and human society. In order to improve the ability of intelligent systems for understanding the world and people, it is critical to design sophisticated machine learning algorithms for extracting robust time series features from such latent knowledge. Motivated by the successful applications of deep learning in computer vision, more and more machine learning researchers put their attentions on the topic of applying deep learning techniques to time series data. However, directly employing current deep models in most time series domains could be problematic. A major reason is that temporal pattern types that current deep models are aiming at are very limited, which cannot meet the requirement of modeling different underlying patterns of data coming from various sources. In this study we address this problem by designing different network structures explicitly based on specific domain knowledge such that we can extract features via most salient temporal patterns. More specifically, we mainly focus on two types of temporal patterns: order patterns and frequency patterns. For order patterns, which are usually related to brain and human activities, we design a hashing-based neural network layer to globally encode the ordinal pattern information into the resultant features. It is further generalized into a specially designed Recurrent Neural Networks (RNN) cell which can learn order patterns in an online fashion. On the other hand, we believe audio-related data such as music and speech can benefit from modeling frequency patterns. Thus, we do so by developing two types of RNN cells. The first type tries to directly learn the long-term dependencies on frequency domain rather than time domain. The second one aims to dynamically filter out the noise frequencies based on temporal contexts. By proposing various deep models based on different domain knowledge and evaluating them on extensive time series tasks, we hope this work can provide inspirations for others and increase the community\u27s interests on the problem of applying deep learning techniques to more time series tasks
    corecore