7,852 research outputs found

    A low-power circuit for piezoelectric vibration control by synchronized switching on voltage sources

    Full text link
    In the paper, a vibration damping system powered by harvested energy with implementation of the so-called SSDV (synchronized switch damping on voltage source) technique is designed and investigated. In the semi-passive approach, the piezoelectric element is intermittently switched from open-circuit to specific impedance synchronously with the structural vibration. Due to this switching procedure, a phase difference appears between the strain induced by vibration and the resulting voltage, thus creating energy dissipation. By supplying the energy collected from the piezoelectric materials to the switching circuit, a new low-power device using the SSDV technique is proposed. Compared with the original self-powered SSDI (synchronized switch damping on inductor), such a device can significantly improve its performance of vibration control. Its effectiveness in the single-mode resonant damping of a composite beam is validated by the experimental results.Comment: 11 page

    Optimal Piezoelectric Actuators and Sensors Configuration for Vibration Suppression of Aircraft Framework Using Particle Swarm Algorithm

    Get PDF
    Numbers and locations of sensors and actuators play an important role in cost and control performance for active vibration control system of piezoelectric smart structure. This may lead to a diverse control system if sensors and actuators were not configured properly. An optimal location method of piezoelectric actuators and sensors is proposed in this paper based on particle swarm algorithm (PSA). Due to the complexity of the frame structure, it can be taken as a combination of many piezoelectric intelligent beams and L-type structures. Firstly, an optimal criterion of sensors and actuators is proposed with an optimal objective function. Secondly, each order natural frequency and modal strain are calculated and substituted into the optimal objective function. Preliminary optimal allocation is done using the particle swarm algorithm, based on the similar optimization method and the combination of the vibration stress and strain distribution at the lower modal frequency. Finally, the optimal location is given. An experimental platform was established and the experimental results indirectly verified the feasibility and effectiveness of the proposed method

    Smart materials application on high performance sailing yachts for energy harvesting

    Get PDF
    Piezoelectric patches are bounded on a keel bulb in order to harvest vibration energy by converting electrical output. Unsteady computational fluid dynamics method is also used to find the structural boundary condition such as the hydrodynamic pressure fluctuation. Finite element analysis (FEM) is used to find structural and electrical responses

    Analysis of the energy harvesting performance of a piezoelectric bender outside its resonance

    Get PDF
    When the frequency of the source of vibration of a piezolectric generator is significantly different from its eigenfrequency, the dielectric power losses become prominent and decrease the amount of power which is practically harvested. For off-resonance vibrating frequencies, the optimal operating conditions can be obtained with a Maximum Power Point Tracking method. This paper introduces complex phasors in the study of power conversion for piezoelectric generators. These complex phasors are used to describe three strategies which help simplify the tracking of the optimal generator output power for vibration frequencies which are away from resonance. Experimental results obtained on a prototype illustrate and confirm the approach with the phasor approaches illustrate and confirm the success of the proposed optimal power tracking strategies. Finally, we show that the efficiency results of each strategy depend on whether they are used inside or outside a frequency bandwidth around the eigenfrequency, and that the length of this bandwidth depends on the excitation amplitude.IRCICA Stimtac Project, INRIA Mint Project

    Natural frequency of beams with embedded piezoelectric sensors and actuators

    No full text
    A mathematical model is developed to study the natural frequency of beams with embedded piezoelectric sensors and actuators. The piezoelectric sensors/actuators in a non-piezoelectric matrix (host beam) are analyzed as two inhomogeneity problems by using Eshelby’s equivalent inclusion method. The natural frequency of the beam is determined from the variational principle in Rayleigh quotient form, which is expressed as functions of the elastic strain energy and dielectric energy of the piezoelectric sensors/actuators. The Euler-Bernoulli beam theory and Rayleigh-Ritz approximation technique are used in the present analysis. Parametric studies show that the size, volume fraction and location of the piezoelectric inclusions significantly influence the natural frequency of the beam

    Active Vibration Control of Structures using an Impedance Matching Control Technique

    Get PDF
    Active vibration control of structures has gained a lot of interest in recent years. This paper presents an active vibration control methodology of a structure using piezoelectric actuators. The proposed methodology is useful in practical applications where the system to be controlled is difficult to model due to the presence of complex boundary conditions. The impedance matching control technique uses a power flow approach wherein the controller is designed such that the power flow into the structure is minimized. The system transfer function is obtained from the experimental collocated actuator/sensor pair data using Eigen Realisation Algorithm (ERA). The controller is designed for the system transfer function according to impedance matching theory. The above approach is targeted towards the vibration control of wind tunnel stings, which suffer from flow-induced vibration. A wind tunnel sting model is designed and fabricated for this study. The real time implementation of the impedance matching controller has been carried out using dSPACE® Digital Signal Processor (DSP) card. The results are encouraging and demonstrate the feasibility of applying this technique in the wind tunne

    Parallel computations and control of adaptive structures

    Get PDF
    The equations of motion for structures with adaptive elements for vibration control are presented for parallel computations to be used as a software package for real-time control of flexible space structures. A brief introduction of the state-of-the-art parallel computational capability is also presented. Time marching strategies are developed for an effective use of massive parallel mapping, partitioning, and the necessary arithmetic operations. An example is offered for the simulation of control-structure interaction on a parallel computer and the impact of the approach presented for applications in other disciplines than aerospace industry is assessed
    corecore