3,432 research outputs found

    A comparison of directional performance of articulated heavy vehicles

    Get PDF
    Abstract: With the increase of international logistics supply chains, modular articulated heavy vehicle (AHV) configurations in freight transport are expected to develop rapidly in China. It is in the process to make a decision on Chinese modular AHV configurations, i.e., what modular configuration for AHVs should be firstly developed and deployed? In order to address the issue, two configurations of AHV were evaluated considering the actual transport situations in China. The lateral stability and the maneuverability of the two configurations AHV, i.e., type-A and -B, were examined using multi-body dynamic modelling and simulation. Numerical simulations were conducted to assess the main directional performance measures, i.e., rearward amplification (RWA) and path-following offtracking (PFOT). Simulations show that the RWA measure of type-B is greater than that of type-A in high-speed evasive maneuvers. In contrast, low-speed PFOT of type-A is larger than that of type-B. Type-A is recommended to be developed first due to the following facts: 1) this AHV exhibits better high-speed lateral stability, 2) the low-speed PFOT of this AHV can be enhanced using advanced vehicle safety systems, e.g., active trailer steering. The achieved results may provide useful guidelines for manufacturers to select and develop effective modular configurations for AHVs.Communication présentée lors du congrès international tenu conjointement par Canadian Society for Mechanical Engineering (CSME) et Computational Fluid Dynamics Society of Canada (CFD Canada), à l’Université de Sherbrooke (Québec), du 28 au 31 mai 2023

    A feedback-feed-forward steering control strategy for improving lateral dynamics stability of an A-double vehicle at high speeds

    Get PDF
    A control strategy based on H∞-type static output feedback combined with dynamic feed-forward is proposed to improve the high-speed lateral performance of an A-double combination vehicle (tractor–semitrailer–dolly–semitrailer) using active steering of the front axle of the dolly. Both feedback and feed-forward syntheses are performed via Linear Matrix Inequality (LMI) optimisation. From a practical point of view, the proposed controller is simple and easy to implement, despite its theoretical complexity. In fact, the measurement of the driver steering angle and only one articulation angle are required for the feed-forward and the feedback controllers, respectively. The results are verified using a high-fidelity vehicle model and confirm a significant reduction in yaw rate and lateral acceleration rearward amplification and also high-speed transient off-tracking, and subsequently improving the lateral stability and performance of the A-double combination vehicle during sudden lane change manoeuvres

    Optimized Future Tractor Semi-trailer Combination

    Get PDF

    2021 Vehicle Dynamics seminar

    Get PDF
    The seminar is held annually. The full title of this year\u27s seminar was "2021 Vehicle Dynamics seminar -- for Future Mobility ...and not only Lateral"

    Trajectory-Following and Off-Tracking Minimization of Long Combination Vehicles: A Comparison Between Nonlinear and Linear Model Predictive Control

    Get PDF
    In this paper, we compared the linear and nonlinear motion prediction models of a long combination vehicle (LCV). We designed a nonlinear model predictive control (NMPC) for trajectory-following and off-tracking minimisation of the LCV. The used prediction model allowed coupled longitudinal and lateral dynamics together with the possibility of a combined steering, propulsion and braking control of those vehicles in long prediction horizons and in all ranges of forward velocity. For LCVs where the vehicle model is highly nonlinear, we showed that the control actions calculated by a linear time-varying model predictive control (LTV-MPC) are relatively close to those obtained by the NMPC if the guess linearisation trajectory is sufficiently close to the nonlinear solution, in contrast to linearising for specific operating conditions that limit the generality of the designed function. We discussed how those guess trajectories can be obtained allowing off-line fixed time-varying model linearisation that is beneficial for real-time implementation of MPC in LCVs with long prediction horizons. The long prediction horizons are necessary for motion planning and trajectory-following of LCVs to maintain stability and tracking quality, e.g. by optimally reducing the speed prior to reaching a curve, and by generating control actions within the actuators limits

    Transportation Mission-Based Optimization of Heavy Combination Road Vehicles and Distributed Propulsion, Including Predictive Energy and Motion Control

    Get PDF
    This thesis proposes methodologies to improve heavy vehicle design by reducing the total cost of ownership and by increasing energy efficiency and safety.Environmental issues, consumers expectations and the growing demand for freight transport have created a competitive environment in providing better transportation solutions. In this thesis, it is proposed that freight vehicles can be designed in a more cost- and energy-efficient manner if they are customized for narrow ranges of operational domains and transportation use-cases. For this purpose, optimization-based methods were applied to minimize the total cost of ownership and to deliver customized vehicles with tailored propulsion components that best fit the given transportation missions and operational environment. Optimization-based design of the vehicle components was found to be effective due to the simultaneous consideration of the optimization of the transportation mission infrastructure, including charging stations, loading-unloading, routing and fleet composition and size, especially in case of electrified propulsion. Implementing integrated vehicle hardware-transportation optimization could reduce the total cost of ownership by up to 35% in the case of battery electric heavy vehicles. Furthermore, in this thesis, the impacts of two future technological advancements, i.e., heavy vehicle electrification and automation, on road freight transport were discussed. It was shown that automation helps the adoption of battery electric heavy vehicles in freight transport. Moreover, the optimizations and simulations produced a large quantity of data that can help users to select the best vehicle in terms of the size, propulsion system, and driving system for a given transportation assignment. The results of the optimizations revealed that battery electric and hybrid heavy combination vehicles exhibit the lowest total cost of ownership in certain transportation scenarios. In these vehicles, propulsion can be distributed over different axles of different units, thus the front units may be pushed by the rear units. Therefore, online optimal energy management strategies were proposed in this thesis to optimally control the vehicle motion and propulsion in terms of the minimum energy usage and lateral stability. These involved detailed multitrailer vehicle modeling and the design and solution of nonlinear optimal control problems
    • …
    corecore